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Abstract—Recently, 3D city modelling has attracted a growing 

interest as a building block for creating city Digital Twins. They 

are complex representations that include interactive 

representations of buildings and infrastructures, integrated with 

the wide range of data typically useful in a Smart City 

environment. This paper presents an automatic method for 

producing 3D city models from a various set of data, as well as its 

integration into the open-source Smart City framework, 

Snap4City. The proposed solution offers a method for creating 

effective integrated data visualizations of 3D city entities coupled 

with a large variety of Smart City data (e.g., IoT Devices which 

generate time-series data, heatmaps, geometries and shapes 

related to traffic flows, bus routes, cycling paths). The solution is 

based on a deep learning approach for rooftop detection and 

alignment based on a U-Net architecture. The implementation has 

been enforced into the open-source Snap4City Smart City 

platform, and has been validated by using a manually created 

ground-truth of 200 buildings scattered uniformly in the central 

area of Florence, plus a number of meshes representing a number 

of facades (not detailed in this paper), and traffic flows, pins, 

heatmaps, etc. 

Keywords—3D City model, Photorealistic texture, digital twin, 

Smart City applications. 

I. INTRODUCTION 

Smart Cities are complex infrastructures integrating 

multiple linked data sources, Internet of Things (IoT) devices 

and applications, involving many different data and 

stakeholders. In this context, spatial data information may act 

as enabler for smart applications and decision support systems, 

provided that they are interoperable with legacy and future 

solutions [1]. Recently, the aspects related to digital 3D city 

modelling and digital twin have gained a growing interest, since 

they allow to create a more realistic context in which the 

decision makers can perform analyses, simulations, planning 

and monitoring in several different domains and application 

areas (e.g., urban planning, energy management, traffic and 

mobility, disaster management, air pollution monitoring). 

Many approaches have been proposed in literature, such as: 

CityGML, CityJSON, the combination of Building Information 

Modeling (BIM) and Geographic Information System (GIS) 

providing a City Information Modeling (CIM) [2].  

In the past years, a relevant amount of research has been 

made in the field of 3D city modelling, to recreate realistic 

visualizations. However, due to the typical size of a city, 

handling all the data and their processing is a challenging task 

still remained unsolved [4]. One critical aspect of developing a 

high-fidelity 3D city model is to find the correct model and 

format for the data that can be rendered by a visual interface 

and may be on web browser. For this purpose, a set of 

requirements have been proposed by CityGML, according to 

different levels of detail (LoD) which can be addressed by the 

models. According to [3], there are five levels of detail: LoD0 

is represented by those models having only a 2D map with 3D 

terrain; LoD1 presents buildings as simple boxes; LoD2 adds 

rooftops details to LoD1 buildings; LoD3 presents also external 

facades structure; LoD4 adds building interiors. LoD4 was 

introduced in CityGML 2.0, but it was removed in the latest 

version of CityGML 3.0. The CityGML and CityJSON have 

defined a format for the representation of geometry and 

topology for 3D buildings, using respectively XML and JSON. 

CityGML 3.0 integrates a  BIM standard, alongside the GIS 

(Geographical Information Systems) format, from Industrial 

Foundation Class (IFC) [5]. Some integrations of CityGML 

have been proposed in real cases, such as the city of Helsinki, 

in which a LoD3 city model was implemented and made 

publicly available [6]. However, the system do not provide 

integration with IoT data or other kind of city data. Another 

similar integration was made by the city of Rotterdam [27], 

recreating a LoD2 type of buildings, however neither 

integrating any decoration elements nor elevation of terrain 

(this is relevant aspect for non flat cities). An attempt of making 

a LoD3 3D city model was made by ETH Zurich with the 

VarCity [7]. However, the provided semantic information is 

generally limited to a small number of semantic classes. The 

3dcitydb implements a 3D model for the city of Berlin [28], 

providing a pickable model of LoD2 buildings, supporting also 

WMS (Web Map Service) layers (typical of GIS solutions 

providing maps, heatmaps and orthomaps) and terrain layer. 

However, neither of those are provided. The city of Stockholm 

[29] implements many aspects of Digital Twin concept, such as 

POI (point of interest), LoD3 type buildings, either with 3D 

tiles and a modelled one, and others 3D entities. However, the 

solution lacks in the implementation of any WMS heatmap.  

In the context of 3D city data collection, advancements in 

Light Detection And Ranging (LiDAR) technology allow to 

model urban topography at spatial resolution and granularity 

which were not achievable before the advent of this technology 

[8]. In [9], a method to create a city model from a point cloud 

generated by LiDAR technology is presented. This approach 

has shown to reduce the time to generate the model, but it 

cannot process unsymmetrical objects and presents some 

geometrical error. 

 A more pleasant and realistic 3D city representations can 

be obtained by enhancing them with textures extracted from 

RGB images. In particular, rooftops textures can be obtained 

from orthomaps or satellite images, facades image patterns, etc. 

However, this is not an easy task: at first, rooftops have to be 

detected in the RGB images [10]; then, the segmented patches 

must be carefully aligned with the top-view of the 3D map. 

https://www.disit.org/
https://www.snap4city.org/
http://cvg.dsi.unifi.it/cvg/


 

 

Indeed, even if geolocalization information is typically 

available, errors are present due to uncertainties [11] and an 

accurate multi-modal registration is required (e.g., between the 

RGB images and the 3D structure) [12]. In the literature, several 

works have addressed these topics using both computer vision 

standard and learning-based solutions. In [13], handcrafted 

features and a hierarchical segmentation approach have been 

used to identify the buildings in rural areas. SVMs (support 

Vector Machines) [14] and Random Forests [15] have also been 

used to address this task. For example, in [16] the authors 

proposed a three-steps method based on color-based clustering, 

roof detection using an SVM and a final false negative 

recovery. Slightly different, in [17] a pair-wise exploitation of 

satellite images has been used to reconstruct a 3D model that 

could then be employed to identify rooftop regions. However, 

such solutions not only have some limitations when working on 

areas with dense buildings, but also require a successive 

registration on the 3D map. More recently, deep learning based 

solutions appeared for remote sensed image processing [18], 

[19]. In [20], a Mask R-CNN (region based convolutional 

neural network) [21] was used to detect rooftops from aerial 

images. Differently, in [22], [23] a U-Net architecture [24] has 

been preferred. Moreover, these last two solutions provide not 

only rooftop segmentation but also the registration on 3D data.  
In this paper, a 3D City Modelling Framework for Smart 

City Digital Twin with textures is presented. The main 
contributions of this paper are the following: first, the production 
of a full functional solution showing 3D city representations on 
the basis of  roads, building planimetry, high, detailed buildings 
with meshes. Thus the creation of a full automatized algorithm 
to map the buildings in the area, creating building models from 
building type and the integration of terrain aspects/pattern, more 
sophisticated 3D shapes based on meshes. Thus the integration 
of the 3D city representations into a Smart City framework (the 
open-source Snap4City platform), in order to provide a smart 
environment and applications for visualizing city entities and 
related data (coming, for instance, from IoT devices generating 
time-series data, heatmaps, geometries and shapes related to 
traffic flows, bus routes, cycling paths etc.), with the possibility 
to pick single city elements or buildings on 3D city 
representation, and inspect their data and attributes. The 
proposed solution is an open-source web-based tool for 
producing a global digital twin integrating IoT and many other 
kind of Smart City data, which has been designed to satisfy the 
most of the identified requirements as reported in the paper. 

The paper is organized as follows: in Section II, requirements 
are presented. In section III, the architecture is described putting 
in evidence the data flow. The model is detailed in Section IV. 
In section V, details of the image processing solution based on 
machine learning is presented for producing the roofs’ patterns 
from orthomaps. In Section I, the final result and process is 
presented. Some notes above the distribution of 3D information 
presented is described in Section VI. In Section VII, some notes 
on the validation regarding the process for roof patter estimation 
are reported. Finally, conclusion are drawn in section VIII. 

II. REQUIREMENTS ANALYSIS 

With the aim of creating a Digital Twin in the context of 
smart cities, the 3D representation of buildings in the city covers 

a relevant role. To this end, a set of specific requirements have 
been identified and are reported in this section. In the past a 
similar approach has been proposed by CityGML which defined 
different levels of detail (LoD) for the models [3]. The CityGML 
approach was mainly on the visual represented and it is actually 
not enough detailed to describe the needs of full Digital Twin 
models in the Smart City solutions for decision makers. 
Therefore, a more complete set of requirements and an 
assessment model for Web delivering of 3D representations of 
Digital Twins at the support of a decision support system is 
presented in this section. Most of the requirements are related to 
the 3D representation and to the integration of 3D data with the 
massive data infrastructure in back which actually supports the 
decision makers. For example, to move a bus stop, to close an 
area for a market, to see the impact of some event. In particular, 
the solution has to provide support for representing in the 3D 
context, the: 

R1. buildings of the city as city structure, roads, gardens, etc. 
The single building should be represented with realistic 
details in terms of shape (facades, roof, towers, cupolas, 
etc.), and patterns on facades and roofs. To this end, 
different techniques can be adopted to model the buildings. 
For example, (i) the simple bounding box of the buildings 
obtained from the perimeter extruded up to the heights of 
the eaves, (ii) the creation of meshes precisely describing 
every tiny detail of the physical structure.  

R2. ground information as road shapes and names, names of 
squares and localities, etc., exploiting the so called 
Orthomaps, with eventual real aerial view patterns. They 
are typically provided in terms of multi resolution tiled 
images from GIS systems using WMS protocol; 

R3. one or more heatmaps superimposed (and transparent) on 
the ground level information without overlapping the 
buildings. For example, to represent some information, 
such as: the heatmaps of temperature, traffic flow, pollutant, 
people flow, etc. Also in this case, they are typically 
provided in term of multi resolution geolocated tiled 
images, provided by GIS using WMS protocol; 

R4. paths and areas super-imposed on the ground and on 
heatmaps levels without overlapping the buildings, for 
example those needed to describe the perimeters of gardens, 
the cycling paths, the trajectories, border of gov areas, etc. 
This information is quite specific and has to be produced on 
the basis of the information recovered from some Open 
Data. Once recovered it can be distributed by using GIS in 
WFS/WMS protocols; 

R5.  pin marking the position of services, IoT Devices, Point 
of Interest, POI, Key Performance Indicator, KPI, etc., and 
providing clickable information according to some data 
model which may provide access to Time Series, shapes, 
etc. This information is quite specific and can be produced 
on the basis of the information recovered from Private 
and/or Open Data; 

R6. terrain information and elevation, so that the skyline of 
the city may include the shape of eventual mountains 
around, and under the city as well. This also means that the 



 

 

buildings and Orthomaps should be placed according to the 
terrain elevation. 

R7. additional 3D entities for completing the realism of the 
scenario, such as: trees, benches, fountains, semaphores, 
digital signages, and any other city furniture, etc.  

 CityGML 
[3] 

Helsinki [6] Rotterda
m [27] 

Berlin [28] Stockholm 
[29] 

R1.i Yes 
(LoD1) 

No (only 
available in 
higher detail) 

No (only 
available 
in higher 
detail) 

No (only 
available in 
higher detail) 

No (only 
available in 
higher 
detail) 

R1.ii Yes 
(LoD3) 

Yes (either 
with object or 
3D tiles) 

Yes 
(LoD2) 

Yes (LoD2) Yes (LoD3) 

R2 No  Yes (C) Yes (C) Yes (C) Yes (but 
with a fixed 
Orthomap) 

R3 No No No Yes (does not 
include Wms) 

No 

R4 No Yes (C) Yes (C) No (x) Yes 

R5 No No No No Yes 

R6 Yes Yes (with 3D 
tiles) 

No No Yes 

R7 Yes 
(LoD2) 

Yes (with 3D 
tiles) 

No No Yes (3d tiles 
and single 
entity) 

RA No(*) Yes Yes Yes Yes 

RB No(*) No No No No 

RC No(*) No No No Yes 

RD.1 not clear 
(may be) 

Yes (when  
models are 
loaded as 
object, not  if 
loaded as 3D 
tiles) 

Yes Yes No 

RD.2 No No No No No 

RE No(*) No No No Yes 

RF No(*) Yes (**) Yes (**) No (x) No 

Table 1 -- Comparison of 3D representation platforms for 
Digital Twins vs Smart City. Where: (*) defines only the building 
model, (**) functionality implemented in CESIUM but without any 
model placed underground, (x) use CESIUM, it could be possible 
to integrate, (C) based on CESIUM. 

In addition, the solution has to be capable to provide some 
interactivity on the above mentioned 3D data structures, in 
particular it should be capable to depict the 3D scene: 

RA. according to the point of view, providing capabilities for 
changing it by: zoom, rotate, tilt, and pan the scene and also 
changing the light or time of the day/night (this may lead to 
produce shades), etc.  

RB. with the sky, maybe with different sky conditions according 
to the actual day, light condition, weather, or weather 
forecast.  

RC. providing access to the information associated with 
augmenting PINs: POI, KPI, etc., and maybe to real time 
data, and time series associated with eventual IoT Devices 
located on the 3D scene.  

RD. providing the possibility of selecting each single building 
to: (1) pass at a more detailed information associated with 
the building, or (2) go into a BIM view of the building, with 
the possibility of navigating into the building structure, and 
again to access at the internal data associate to PINs into the 
building. May be also disabling the building view to see 
only the 3D of city without the buildings but with PINs. 

RE. providing possibility of selecting an element (3D, PIN, 
ground, heatmap) to provoke a call back into a business 
logic tool for provoking events and actions in the systems, 
at which the developers may associate intelligence 
activities, analytics, other views, etc..  

RF. providing the possibility of inspecting the ground terrain 
and see the  detailed 3D elements placed in the 
underground, such as water pipes, or located in the ground 
as benches, luminaries, red lights, etc. 

According to the identified requirements, in the following Table 
1, an assessment of the most relevant solutions is reported. 

III. ARCHITECTURE AND PROCESS 

According to the above described requirements, a solution 
for Smart City Digital Twin, SCDT, has to address three main 
aspects: (a) the 3D model enabling the representation of the 
information in integrated manner, (b) the software architecture 
for distributing and provide access to the 3D representation via 
a suitable user interface presenting the (a) 3D model including 
the interactivities features, and (c) the production process of 
the 3D models by starting from multiple information which have 
to be recovered from accessible resources or produced/acquired, 

The above described requirements from R1 to R7 mainly 
impact on (a) and (b) for the resulting performance on distribute 
and reproduce the representation in real time on browser. Thus, 
providing support for the users to interact with the 3D 
representation in real time. The system presents challenging 
aspects due to the large amount of data to be processed on client 
side on the basis of the point of view. This impacts especially 
when several details are provided at the same time in the same 
view, e.g., photorealistic textures, detailed heatmaps, complex 
terrains shape that implies to compute several projections to 
avoid overlaps, etc. In these cases, the issue is typically 
mitigated at the expense of a lower resolution of textures. 

 

Figure 1 – Data Flow of the production process for creating a 
Digital Twin for smart cities.  

On the other hand, the features from RA to RF have to be 
mainly satisfied by the production process © of the data model 
to be distributed according to (a) and (b). In fact, the model can 
be composed by several elements: 3D representation, meshes, 
patterns, etc. The process to pass from images and data to the 
integrated 3D model is not trivial as partially described in this 



 

 

paper for some aspects. On this regard, the production process  
to produce the SCDT model is depicted in Figure 1. The 
production process puts in evidence the data sources: GIS, raw 
images, building shapes, heatmaps, PINs, POI, IoT devices, 
Terrain DTM (Digital Terrain Model), etc., and the optional 
LIDAR data which may be exploited for adding details and 
shortcutting some of the procedures.   

According to Figure 1, the production process for the 
creation of the 3D model requires a set of sub-processes: 

• Roof pattern extraction: photorealistic textures of building 
rooftops can be obtained from orthomaps. Since orthomaps 
are typically roughly geo-localized, a careful registration 
w.r.t. the building shapes is required. After that, textures can 
be extracted and provided as PNG or JPEG files. 

• Facades pattern extraction: differently from rooftop 
textures, where the used orthomaps are relatively easily 
accessible nowadays, façade texturing requires a specific 
acquisition campaign. Moreover, the acquired RGB images 
must be processed to remove radial and projective 
distortions, and finally, the building facades must be 
accurately identified and extracted. As for rooftops, 
obtained textures can be provide as PNG or JPEG files. 

• Create 3D buildings with flat roof (by extrusion): given 
the building shapes plus their height, typically measured at 
their eaves, simple 3D models with flat rooftop can be 
obtained. The resulting data format is a GeoJSON file with 
a height/elevation attribute to compute the building 
extrusion from the ground at run time. This is the model 
used to implement the picking functionality. 

• Create 3D building with 3D roof: when a Digital Surface 
Model (DSM) is available, obtained from LIDAR data or 
other acquisition modality, accurate 3D roof shapes can be 
obtained to build a more realistic SCDT. The buildings 3D 
models can be provided as glTF (GL transmission format) 
files, with geo-localization information. 

• Create 3D building with photorealistic textures: the 3D 
buildings obtained by extrusion or exploiting a DSM can be 
enhanced with photorealistic rooftop and façade patterns by 
applying textures extracted from RGB images. Textured 
building models are saved in glTF files, with geo-
localization information. 

• 3D design of High Value Buildings, HVBs: in order to 
produce accurate representation of HVBs a manual 3D 
design or automatic computer vision techniques (such as 
Structure from Motion) can be employed. This requires 
precise measurements or specific image/video acquisition 
campaign. Additionally, geo-localization information must 
be provided. Also in this case, the resulting textured 3D 
models can be exported as geo-localized glTF files. 

• Integrated view of HVBs + buildings with roof and 
facades: the building 3D models and the HVB models are 
finally placed into a unique 3D representation exploiting 
their geo-localization information, thus obtaining the 
complete 3D representation for the SCDT.  

The general architecture for distributing SCDT includes a set of 
data integrating 3D models, meshes, with DTM, heatmap, traffic 
flow, Pins, IOT, POI, etc., as described in the paper.  

For the distribution of the data: 

• 3D representation File in GeoJSON via HTTPS: it 
describes the 3D structure of the city and all information 
related to it. It is used to represent the city model in extruded 
mode and to retrieve the buildings information or other BIM 
data for the picking functionality. 

• 3D representation File in glTF/GLB (GLB is the binary 
version of glTF) via HTTPS: it describes the 3D structure 
of the city in terms of building and their relationships with 
the other graphic elements: facades, meshes of HVB, 
textures and materials.  

• Pattern files via HTTPS: pattern images for facades, roofs, 
DTM files in PNG format, Sky texture, etc.,  

• GIS server via WMS over https is providing (via 
GeoServer, also integrated into Snap4City platform): 
orthomaps, maps, heatmaps, animated heatmaps, traffic 
flows, animated traffic flows, etc., on the basis of the 
portion of the map shown in the window frame. 

• SuperService Map of Snap4City platform via smart city 
API via https [33], [30] is providing semantic details in 
JSON such as: roads graph, POI, IoT data, Pins, cycling 
paths, vectorial traffic flows, etc., on the basis of the portion 
of the map shown in the window. 

IV. MODEL AND REPRESENTATION 

The model for creating the 3D representations, which allows 
to provide all the above mentioned information, is based on a 
hierarchical layered structure depicted in Figure 2 and described 
in this sections.  

 

Figure 2:  Hierarchical layers structure of the model 

 

The layered solution has been implemented via WebGL API, 
in order to process all the data in parallel, thanks to the GPU 
passthrough, to this end, the open-source library called Deck.gl 
has been used. All the layers needed for the representation of the 



 

 

Snap4City platform data types have been implemented, and they 
are loaded at runtime on user demand. Thanks to the multi-layer 
structure of deck.gl, layers have been implemented individually 
with their own safe context, to avoid interferences one with each 
other. Every layer has its own scope, managing its own data 
type. Therefore, in the following we are introducing the 
implemented layers to describe data types provided in the 
Snap4City 3D representation. 

First, the base deck application has been realized by using a 
custom implementation and management of the viewState 
object, in which all the geographical information for the map 
(such as latitude, longitude, zoom, etc.), are defined. We have 
also implemented a custom rendering in order to add features 
like SkyBox that need direct access to the WebGL context. 
Starting from the first layer. The elevation of the terrain has been 
modelled by implementing a composite layer called TileLayer, 
which is used to divide the maps in multiple tiles with their own 
sublayer: for each tile a sublayer called TerrainLayer has been 
created. Thus the elevation map, in the form of DTM files, has 
been used to create the TerrainLayer 3D model from the map, 
and the background orthomap has been used as a texture of the 
terrain objects. The result is a 3D representation of terrain with 
texture to better represent the territory. 

The background orthomaps have been also implemented 
through a TileLayer. In this case, we used the BitmapLayer to 
display an image in the map. This method has been also used to 
represent heatmaps, which are essentials to provide a fast access 
/ representation to large amounts of data. In order to implement 
heatmap visualization in deck.gl, we used the composite layer 
which automatically retrieves heatmaps from a dedicated geo-
server (through several formats, including WMS) and displays 
them as an image. Heatmaps can be static or animated; static 
heatmaps are viewed as single PNG images, while animated 
ones are sent by the geo-server in GIF format, and they are later 
divided in multiple images and rendered sequentially with a 
customizable delay time. 

For the implementation of data coming from different 
sources like IoT devices, trajectories, cycling paths, etc., various 
layers with a specific JSON mapping have been implemented. 
To display paths and geometries, different layers depending on 
the type of geometry to be displayed have been used, i.e. 
LineLayer for trajectories, PathLayer for the cycling path. IoT 
devices are also displayed as pickable markers on the map. 
When a user selects one of them, a popup with the sensor 
information (static attributes as well as real-time data, if 
available) is shown. Whenever the sensor provides real-time 
data, they can be displayed on dedicated widgets, such as time 
trends, when the user requests them. 

3D representation of buildings are provided in two manners: 
Extruded and Realistic (meshes, HVB). Extruded buildings are 
implemented by using a GeoJSON file, in order to have a faster 
loading time, and this is required because this type of buildings 
are loaded even when the realistic ones are loaded.  

Realistic buildings HVB (presenting photorealistic rooftop 
details and eventually facades textures) can be loaded as both 
SceneGraph and 3D tiles. In order to implement the picking 
functionality we need also to render the extruded buildings 
underneath. The Extruded type is totally described in a single 

GeoJSON file, where the following elements are defined for 
each building: the base polygon, the height, and various other 
attributes and information. The GeoJSON file is loaded in a 
layer called GeoJSONLayer, and it is responsible to take all the 
features in the file and display them on the map, with the base 
polygon extruded by its height. In the case of Realistic building 
data type, we use the glTF and GLB formats to describe the 
scene, and they are loaded by the SceneGraphLayer. This type 
of integration works well to achieve impressive visualization 
without impacting too much on the application performances. 
3D buildings can also be individually picked on map, in order to 
see all the building information, besides linking to dedicated 
BIM representations or other details, if available.  

V. PRODUCTION PROCESS 

In this section, we present details of our implemented 
subprocesses to (A) extract roof patterns, (B) create 3D building 
with flat roof and photorealistic textures, and (C) integrate HVB 
and 3D building into a unique 3D representation.  

A. Roof pattern extraction 

Orthomaps of the city of Florence, kindly provided by the 

“Sistema Informativo Territoriale ed Ambientale” of Tuscany 

Region was used to obtain the roof’s textures. These RGB 

photos are tiles with a resolution of 8200x6200 pixels, with 

partial overlap and rough geo-localization in the EPSG 3003 

(Monte Mario / Italy zone 1) coordinate system.  

To start with, the aerial images and the 2D GIS building 

shapes (expressed in the EPSG 4326 coordinate system 

(Geodetic Parameter Dataset, Originally created by European 

Petroleum Survey Group)) were converted into a common 

coordinate reference system. We noticed that by merely 

translating the orthographic photos from EPSG 3003 to EPSG 

4326 was not convenient, as it produced evident alterations in 

the Ground Sample Distance (GSD, i.e., is the distance, in 

meters, between pixel centres measured on the ground). To 

mitigate this effect and better maintain the GSD, we selected a 

third common coordinate system (EPSG 3857 – 

WGS84/Pseudo-Mercator) onto which to project both images 

and shapes. 

Multiple orthomap tiles describing the considered area were 

fused into a single mosaic image using the Geospatial Data 

Abstraction Library, GDAL (https://gdal.org/). Then, we down 

sampled the mosaic image by a factor of 1/4. This size reduction 

was crucial in order to obtain a relevant speed-up in the 

successive steps, yet without losing accuracy, as the chosen 

image resolution allows the rooftop detection and alignment 

deep net (see hereafter) to operate optimally. 

To detect the rooftops from the orthomaps and align them 

with the building shapes, we used the method presented in [23], 

based on a double U-Net architecture exploiting multi-

resolution [25] and multi-task learning [26]. The net takes as 

input an RGB orthomap and the corresponding cadastral map 

(represented as a binary image), and outputs a list of multi-

polygons aligned with the RGB image. In order to obtain the 

cadastral map, the 2D shapes of the buildings were converted 

into a raster binary image. The output multi-polygons, up-

scaled to take into account the image down-sampling 

https://gdal.org/


 

 

previously done, were then exploited to both extract rooftop 

textures (from the full resolution mosaic) and align them with 

the 2D building shapes. An affine transformation to warp the 

mosaic Orthomaps and register it w.r.t. the 2D building shapes 

was computed. However, using a single transformation for all 

the multi-polygons would give rise to local inaccuracies. For 

this reason, we computed a dedicated transformation for each 

multi-polygon and locally warped the image so as to obtain a 

better registration. Specifically, given the vertexes of an aligned 

multi-polygon 𝑉𝐴  and the vertexes of the corresponding 2D 

shape 𝑉𝑆 an affine transformation 𝑇 was estimated such as 

 

 𝑉𝑆 = 𝑇𝑉𝐴                        (1) 

 

Then, according to the estimated 𝑇, the orthomap was warped 

and the considered rooftop was extracted. After repeating this 

process for all the multi-polygons, a complete warped orthomap 

(including only the rooftops) was obtained and exported as 

JPEG file. Note that, while exporting the texture image, 

different resolution can be used to obtain smaller weights and 

faster visualization. 

B. Creation of 3D model with flat roof and photorealistic 

textures  

3D model construction and texturing were carried out with 

Blender. The building 3D models were obtained by extrusion 

from the 2D shapes exploiting their height attributes (included 

in a GeoJSON as above described) with the BlenderGIS library. 

Then a UV-map of the roof areas was created by retrieving the 

surfaces with normal vectors perpendicular to the main plane, 

and the warped orthomap was used to texture the polygons 

described in the UV-map using the Python Blender API.  

C. HVB integration 

Using Blender, we were also able to include and geo-

locating in the map the 3D models of HVBs. For example, as 

shown in Figure 3, an accurate 3D reconstructions of Santa 

Maria del Fiore Cathedral (Florence Dome) was placed into the 

3D representation, thus achieving a nicer final result.  

 
Figure 3: An example of integration of a HVB into the 3D map (in this 

case the Santa Maria del Fiore Cathedral in Florence). 

The obtained 3D textured models of the buildings as well as 

the HVB models were exported in glTF format (including 3D 

geometries, textures, and coordinates) ready to be deployed in 

the Snap4City platform using the SceneGraphLayer of the 

deck.gl framework (https://deck.gl/). 

VI. ACCESS AND DISTRIBUTION IN SNAP4CITY 

Snap4City is an open-source platform developed at DISIT 
Lab, University of Florence (https://www.snap4city.org/), [30] 
[31], [32]. The platform manages heterogeneous data sources, 
such as: IoT devices (city sensors and actuators, as well as 
private devices, supporting a large variety of brokers and 
protocols), open data, external services. For each different kind 
of data, static attributes (such as geographical information and 
other metadata) and also real-time data (when available) are 
collected. Device data are semantically indexed in an RDF 
Knowledge Base, thus they can be retrieved by dedicated APIs 
and exploited by Data Analytics processes and IoT applications 
to perform analyses, simulations, forecasts etc. This allows users 
to produce new knowledge on data, which can be shown on user 
interface through Dashboards and a wide range of widgets 
(showing data both in pull and push modalities). The purpose of 
integrating the photorealistic 3D city model obtained with the 
method described in Section IV into the Snap4City platform is 
to provide a Multi-Data map which can allow the visualization 
of an interactive 3D environment of the city, with the possibility 
of inspecting the different kinds of entities and related data, such 
as: IoT devices, Points of Interests (POI), heatmaps, geometries 
related to bus routes, cycle paths, traffic flows, etc. In this way, 
the Snap4City platform allows to exploit a complete open-
source framework that can collect, process, and manage all the 
data needed to obtain a high-fidelity Smart City Digital Twin.  

In order to integrate the 3D representations in the Snap4City 
platform, the deck.gl open-source library has been used, as 
described in Section V. By exploiting the multi-layer structure 
of deck.gl, we implemented a distinct layer for every type of data 
supported by the platform. All layers can be viewed and 
removed dynamically by user choice. An example of the 
resulting 3D map is shown in Figure 4: the 3D representations 
can be instantiated by users as a customizable widget in their 
own dashboards. Figure 4 represents the 3D city representation 
with the addition of textures and 3D model enriched with the 
textures obtained using the method described in Section V, the 
model presented in Section IV and  the whole  architecture of 
Section III. The tool is freely accessible on web and also 
includes heatmaps, traffic flow sensors, traffic flow data, 
animations, PINs for IOT and POI, etc. 

Regarding the implementation in deck.gl, first an IconLayer 

was implemented to represent all the IoT devices managed by 

the platform. IoT devices are ingested and stored in a semantic 

Knowledge Base, and they are classified by semantic 

categories. Therefore, a pool with different icons for each type 

of device category is used to represent device markers on map. 

The user can access to all information given by a specific sensor  

and city element by simply clicking on the device PIN; in this 

way, a popup is shown presenting static attributes and, when 

available, real-time and historical data can be selected and 

viewed on dedicated time-trend and single-content widgets.  

https://deck.gl/
https://www.snap4city.org/


 

 

The code of the open source Snap4City Dashboard Builder is 

available at the following GitHube repository: 

https://github.com/disit/dashboard-builder. 

VII. ROOFTOP EXTRACTION VALIDATION  

To obtain a quantitative validation of the rooftop extraction 

results on our data, we manually created a set of ground-truth 

multi-polygon for 200 buildings scattered uniformly on the 

covered area. Then we evaluated the Intersection over Union 

(IoU) between the ground-truth and the input (non-aligned) and   

the output (aligned) multi-polygons.  

 

In Figure 5, a bar plot showing the IoU score obtained for 

each considered building is reported. As can be seen, for almost 

all the test cases (only in four cases the input multi-polygons 

have higher IoU), the IoU increases using the output multi-

polygons, confirming the effectiveness of the used approach. In 

average we obtain an IoU score of 0.7100 for the input multi-

polygons, and 0.8854 for the output multi-polygons after align 

them using the deep network, with an increase of almost 17.5%. 

VIII. CONCLUSIONS 

 In this paper, a system for implementing a 3D city model 
with photorealistic texture integrated into a Smart City 
framework has been presented. The proposed solution follows a 
deep learning approach based on U-Net to detect the rooftops 
from aerial images and align them with the 3D map buildings, 
which are obtained by extrusion from GeoJSON data. The 
solution is implemented in the open-source Snap4City platform 
as a multi-layer 3D map, which can be used by users as a widget 
on dashboards to visualize a full 3D city environment and a large 
variety of data, including IoT devices (city sensors and 
actuators, as well as private devices), POI, heatmaps, geometries 
and polylines related to cycling paths, bus routes, traffic flow 
etc. Specifically, users have the possibility to pick on map the 
single city elements and device markers and inspect their data 
and attributes. In this way, the proposed solution aims at 
providing an easy and smart navigation of the global digital twin 
of the city and the related data. The method employed for 
rooftop detection and alignment was validated against a set of 
200 ground-truth multi-polygons  extracted from aerial images 
of buildings uniformly scattered in the metropolitan area of 
Florence: after the alignment the, IoU score rises from 0.7370 to 
0.8848, confirming the validity of the used approach. As a future 
work, an automatic procedure is going to be developed, in order 

 
Figure 4: 3D Multi Data Map of Snap4City with addition of textures and mesh based 3D building (the Florence dome) [31], [32]. 

https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MzI5Mw==  accessible to all.  

 

 
Figure 5: IoU scores for each of the 200 considered buildings. In blue the 

scores of the input (non-aligned) multi-polygons, in red the results on the 
output (aligned) multi-polygons. As can be seen, IoU increase for almost all 

the buildings on the aligned multi-polygons: only in four cases the input 

multi-polygons obtained better IoU. Note that results are ordered w.r.t. the 
aligned IoU scores for better readability. 

 

https://github.com/disit/dashboard-builder
https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MzI5Mw==


 

 

to apply photorealistic texture also to building facades. Many 
other architecture details have been omitted for the lack of space 
such as the details regarding the content distribution, the 
production of facades, the exploitation of Lidar data. 
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