

DOI reference number: 10.18293/DMSVIVA22-012

Digital Twin Framework for Smart City Solutions

L. Adreani1, P. Bellini1, C. Colombo2, M. Fanfani1,2, P. Nesi1, G. Pantaleo1, R. Pisanu2
University of Florence, Florence, Italy, email: <name>.<surname>@unifi.it

1) DISIT lab, https://www.disit.org, https://www.snap4city.org

2) Computational Vision Group http://cvg.dsi.unifi.it/cvg/

Abstract—Recently, 3D city modelling has attracted a growing

interest as a building block for creating city Digital Twins. They

are complex representations that include interactive

representations of buildings and infrastructures, integrated with

the wide range of data typically useful in a Smart City

environment. This paper presents an automatic method for

producing 3D city models from a various set of data, as well as its

integration into the open-source Smart City framework,

Snap4City. The proposed solution offers a method for creating

effective integrated data visualizations of 3D city entities coupled

with a large variety of Smart City data (e.g., IoT Devices which

generate time-series data, heatmaps, geometries and shapes

related to traffic flows, bus routes, cycling paths). The solution is

based on a deep learning approach for rooftop detection and

alignment based on a U-Net architecture. The implementation has

been enforced into the open-source Snap4City Smart City

platform, and has been validated by using a manually created

ground-truth of 200 buildings scattered uniformly in the central

area of Florence, plus a number of meshes representing a number

of facades (not detailed in this paper), and traffic flows, pins,

heatmaps, etc.

Keywords—3D City model, Photorealistic texture, digital twin,

Smart City applications.

I. INTRODUCTION

Smart Cities are complex infrastructures integrating

multiple linked data sources, Internet of Things (IoT) devices

and applications, involving many different data and

stakeholders. In this context, spatial data information may act

as enabler for smart applications and decision support systems,

provided that they are interoperable with legacy and future

solutions [1]. Recently, the aspects related to digital 3D city

modelling and digital twin have gained a growing interest, since

they allow to create a more realistic context in which the

decision makers can perform analyses, simulations, planning

and monitoring in several different domains and application

areas (e.g., urban planning, energy management, traffic and

mobility, disaster management, air pollution monitoring).

Many approaches have been proposed in literature, such as:

CityGML, CityJSON, the combination of Building Information

Modeling (BIM) and Geographic Information System (GIS)

providing a City Information Modeling (CIM) [2].

In the past years, a relevant amount of research has been

made in the field of 3D city modelling, to recreate realistic

visualizations. However, due to the typical size of a city,

handling all the data and their processing is a challenging task

still remained unsolved [4]. One critical aspect of developing a

high-fidelity 3D city model is to find the correct model and

format for the data that can be rendered by a visual interface

and may be on web browser. For this purpose, a set of

requirements have been proposed by CityGML, according to

different levels of detail (LoD) which can be addressed by the

models. According to [3], there are five levels of detail: LoD0

is represented by those models having only a 2D map with 3D

terrain; LoD1 presents buildings as simple boxes; LoD2 adds

rooftops details to LoD1 buildings; LoD3 presents also external

facades structure; LoD4 adds building interiors. LoD4 was

introduced in CityGML 2.0, but it was removed in the latest

version of CityGML 3.0. The CityGML and CityJSON have

defined a format for the representation of geometry and

topology for 3D buildings, using respectively XML and JSON.

CityGML 3.0 integrates a BIM standard, alongside the GIS

(Geographical Information Systems) format, from Industrial

Foundation Class (IFC) [5]. Some integrations of CityGML

have been proposed in real cases, such as the city of Helsinki,

in which a LoD3 city model was implemented and made

publicly available [6]. However, the system do not provide

integration with IoT data or other kind of city data. Another

similar integration was made by the city of Rotterdam [27],

recreating a LoD2 type of buildings, however neither

integrating any decoration elements nor elevation of terrain

(this is relevant aspect for non flat cities). An attempt of making

a LoD3 3D city model was made by ETH Zurich with the

VarCity [7]. However, the provided semantic information is

generally limited to a small number of semantic classes. The

3dcitydb implements a 3D model for the city of Berlin [28],

providing a pickable model of LoD2 buildings, supporting also

WMS (Web Map Service) layers (typical of GIS solutions

providing maps, heatmaps and orthomaps) and terrain layer.

However, neither of those are provided. The city of Stockholm

[29] implements many aspects of Digital Twin concept, such as

POI (point of interest), LoD3 type buildings, either with 3D

tiles and a modelled one, and others 3D entities. However, the

solution lacks in the implementation of any WMS heatmap.

In the context of 3D city data collection, advancements in

Light Detection And Ranging (LiDAR) technology allow to

model urban topography at spatial resolution and granularity

which were not achievable before the advent of this technology

[8]. In [9], a method to create a city model from a point cloud

generated by LiDAR technology is presented. This approach

has shown to reduce the time to generate the model, but it

cannot process unsymmetrical objects and presents some

geometrical error.

 A more pleasant and realistic 3D city representations can

be obtained by enhancing them with textures extracted from

RGB images. In particular, rooftops textures can be obtained

from orthomaps or satellite images, facades image patterns, etc.

However, this is not an easy task: at first, rooftops have to be

detected in the RGB images [10]; then, the segmented patches

must be carefully aligned with the top-view of the 3D map.

https://www.disit.org/
https://www.snap4city.org/
http://cvg.dsi.unifi.it/cvg/

Indeed, even if geolocalization information is typically

available, errors are present due to uncertainties [11] and an

accurate multi-modal registration is required (e.g., between the

RGB images and the 3D structure) [12]. In the literature, several

works have addressed these topics using both computer vision

standard and learning-based solutions. In [13], handcrafted

features and a hierarchical segmentation approach have been

used to identify the buildings in rural areas. SVMs (support

Vector Machines) [14] and Random Forests [15] have also been

used to address this task. For example, in [16] the authors

proposed a three-steps method based on color-based clustering,

roof detection using an SVM and a final false negative

recovery. Slightly different, in [17] a pair-wise exploitation of

satellite images has been used to reconstruct a 3D model that

could then be employed to identify rooftop regions. However,

such solutions not only have some limitations when working on

areas with dense buildings, but also require a successive

registration on the 3D map. More recently, deep learning based

solutions appeared for remote sensed image processing [18],

[19]. In [20], a Mask R-CNN (region based convolutional

neural network) [21] was used to detect rooftops from aerial

images. Differently, in [22], [23] a U-Net architecture [24] has

been preferred. Moreover, these last two solutions provide not

only rooftop segmentation but also the registration on 3D data.
In this paper, a 3D City Modelling Framework for Smart

City Digital Twin with textures is presented. The main
contributions of this paper are the following: first, the production
of a full functional solution showing 3D city representations on
the basis of roads, building planimetry, high, detailed buildings
with meshes. Thus the creation of a full automatized algorithm
to map the buildings in the area, creating building models from
building type and the integration of terrain aspects/pattern, more
sophisticated 3D shapes based on meshes. Thus the integration
of the 3D city representations into a Smart City framework (the
open-source Snap4City platform), in order to provide a smart
environment and applications for visualizing city entities and
related data (coming, for instance, from IoT devices generating
time-series data, heatmaps, geometries and shapes related to
traffic flows, bus routes, cycling paths etc.), with the possibility
to pick single city elements or buildings on 3D city
representation, and inspect their data and attributes. The
proposed solution is an open-source web-based tool for
producing a global digital twin integrating IoT and many other
kind of Smart City data, which has been designed to satisfy the
most of the identified requirements as reported in the paper.

The paper is organized as follows: in Section II, requirements
are presented. In section III, the architecture is described putting
in evidence the data flow. The model is detailed in Section IV.
In section V, details of the image processing solution based on
machine learning is presented for producing the roofs’ patterns
from orthomaps. In Section I, the final result and process is
presented. Some notes above the distribution of 3D information
presented is described in Section VI. In Section VII, some notes
on the validation regarding the process for roof patter estimation
are reported. Finally, conclusion are drawn in section VIII.

II. REQUIREMENTS ANALYSIS

With the aim of creating a Digital Twin in the context of
smart cities, the 3D representation of buildings in the city covers

a relevant role. To this end, a set of specific requirements have
been identified and are reported in this section. In the past a
similar approach has been proposed by CityGML which defined
different levels of detail (LoD) for the models [3]. The CityGML
approach was mainly on the visual represented and it is actually
not enough detailed to describe the needs of full Digital Twin
models in the Smart City solutions for decision makers.
Therefore, a more complete set of requirements and an
assessment model for Web delivering of 3D representations of
Digital Twins at the support of a decision support system is
presented in this section. Most of the requirements are related to
the 3D representation and to the integration of 3D data with the
massive data infrastructure in back which actually supports the
decision makers. For example, to move a bus stop, to close an
area for a market, to see the impact of some event. In particular,
the solution has to provide support for representing in the 3D
context, the:

R1. buildings of the city as city structure, roads, gardens, etc.
The single building should be represented with realistic
details in terms of shape (facades, roof, towers, cupolas,
etc.), and patterns on facades and roofs. To this end,
different techniques can be adopted to model the buildings.
For example, (i) the simple bounding box of the buildings
obtained from the perimeter extruded up to the heights of
the eaves, (ii) the creation of meshes precisely describing
every tiny detail of the physical structure.

R2. ground information as road shapes and names, names of
squares and localities, etc., exploiting the so called
Orthomaps, with eventual real aerial view patterns. They
are typically provided in terms of multi resolution tiled
images from GIS systems using WMS protocol;

R3. one or more heatmaps superimposed (and transparent) on
the ground level information without overlapping the
buildings. For example, to represent some information,
such as: the heatmaps of temperature, traffic flow, pollutant,
people flow, etc. Also in this case, they are typically
provided in term of multi resolution geolocated tiled
images, provided by GIS using WMS protocol;

R4. paths and areas super-imposed on the ground and on
heatmaps levels without overlapping the buildings, for
example those needed to describe the perimeters of gardens,
the cycling paths, the trajectories, border of gov areas, etc.
This information is quite specific and has to be produced on
the basis of the information recovered from some Open
Data. Once recovered it can be distributed by using GIS in
WFS/WMS protocols;

R5. pin marking the position of services, IoT Devices, Point
of Interest, POI, Key Performance Indicator, KPI, etc., and
providing clickable information according to some data
model which may provide access to Time Series, shapes,
etc. This information is quite specific and can be produced
on the basis of the information recovered from Private
and/or Open Data;

R6. terrain information and elevation, so that the skyline of
the city may include the shape of eventual mountains
around, and under the city as well. This also means that the

buildings and Orthomaps should be placed according to the
terrain elevation.

R7. additional 3D entities for completing the realism of the
scenario, such as: trees, benches, fountains, semaphores,
digital signages, and any other city furniture, etc.

 CityGML
[3]

Helsinki [6] Rotterda
m [27]

Berlin [28] Stockholm
[29]

R1.i Yes
(LoD1)

No (only
available in
higher detail)

No (only
available
in higher
detail)

No (only
available in
higher detail)

No (only
available in
higher
detail)

R1.ii Yes
(LoD3)

Yes (either
with object or
3D tiles)

Yes
(LoD2)

Yes (LoD2) Yes (LoD3)

R2 No Yes (C) Yes (C) Yes (C) Yes (but
with a fixed
Orthomap)

R3 No No No Yes (does not
include Wms)

No

R4 No Yes (C) Yes (C) No (x) Yes

R5 No No No No Yes

R6 Yes Yes (with 3D
tiles)

No No Yes

R7 Yes
(LoD2)

Yes (with 3D
tiles)

No No Yes (3d tiles
and single
entity)

RA No(*) Yes Yes Yes Yes

RB No(*) No No No No

RC No(*) No No No Yes

RD.1 not clear
(may be)

Yes (when
models are
loaded as
object, not if
loaded as 3D
tiles)

Yes Yes No

RD.2 No No No No No

RE No(*) No No No Yes

RF No(*) Yes (**) Yes (**) No (x) No

Table 1 -- Comparison of 3D representation platforms for
Digital Twins vs Smart City. Where: (*) defines only the building
model, (**) functionality implemented in CESIUM but without any
model placed underground, (x) use CESIUM, it could be possible
to integrate, (C) based on CESIUM.

In addition, the solution has to be capable to provide some
interactivity on the above mentioned 3D data structures, in
particular it should be capable to depict the 3D scene:

RA. according to the point of view, providing capabilities for
changing it by: zoom, rotate, tilt, and pan the scene and also
changing the light or time of the day/night (this may lead to
produce shades), etc.

RB. with the sky, maybe with different sky conditions according
to the actual day, light condition, weather, or weather
forecast.

RC. providing access to the information associated with
augmenting PINs: POI, KPI, etc., and maybe to real time
data, and time series associated with eventual IoT Devices
located on the 3D scene.

RD. providing the possibility of selecting each single building
to: (1) pass at a more detailed information associated with
the building, or (2) go into a BIM view of the building, with
the possibility of navigating into the building structure, and
again to access at the internal data associate to PINs into the
building. May be also disabling the building view to see
only the 3D of city without the buildings but with PINs.

RE. providing possibility of selecting an element (3D, PIN,
ground, heatmap) to provoke a call back into a business
logic tool for provoking events and actions in the systems,
at which the developers may associate intelligence
activities, analytics, other views, etc..

RF. providing the possibility of inspecting the ground terrain
and see the detailed 3D elements placed in the
underground, such as water pipes, or located in the ground
as benches, luminaries, red lights, etc.

According to the identified requirements, in the following Table
1, an assessment of the most relevant solutions is reported.

III. ARCHITECTURE AND PROCESS

According to the above described requirements, a solution
for Smart City Digital Twin, SCDT, has to address three main
aspects: (a) the 3D model enabling the representation of the
information in integrated manner, (b) the software architecture
for distributing and provide access to the 3D representation via
a suitable user interface presenting the (a) 3D model including
the interactivities features, and (c) the production process of
the 3D models by starting from multiple information which have
to be recovered from accessible resources or produced/acquired,

The above described requirements from R1 to R7 mainly
impact on (a) and (b) for the resulting performance on distribute
and reproduce the representation in real time on browser. Thus,
providing support for the users to interact with the 3D
representation in real time. The system presents challenging
aspects due to the large amount of data to be processed on client
side on the basis of the point of view. This impacts especially
when several details are provided at the same time in the same
view, e.g., photorealistic textures, detailed heatmaps, complex
terrains shape that implies to compute several projections to
avoid overlaps, etc. In these cases, the issue is typically
mitigated at the expense of a lower resolution of textures.

Figure 1 – Data Flow of the production process for creating a
Digital Twin for smart cities.

On the other hand, the features from RA to RF have to be
mainly satisfied by the production process © of the data model
to be distributed according to (a) and (b). In fact, the model can
be composed by several elements: 3D representation, meshes,
patterns, etc. The process to pass from images and data to the
integrated 3D model is not trivial as partially described in this

paper for some aspects. On this regard, the production process
to produce the SCDT model is depicted in Figure 1. The
production process puts in evidence the data sources: GIS, raw
images, building shapes, heatmaps, PINs, POI, IoT devices,
Terrain DTM (Digital Terrain Model), etc., and the optional
LIDAR data which may be exploited for adding details and
shortcutting some of the procedures.

According to Figure 1, the production process for the
creation of the 3D model requires a set of sub-processes:

• Roof pattern extraction: photorealistic textures of building
rooftops can be obtained from orthomaps. Since orthomaps
are typically roughly geo-localized, a careful registration
w.r.t. the building shapes is required. After that, textures can
be extracted and provided as PNG or JPEG files.

• Facades pattern extraction: differently from rooftop
textures, where the used orthomaps are relatively easily
accessible nowadays, façade texturing requires a specific
acquisition campaign. Moreover, the acquired RGB images
must be processed to remove radial and projective
distortions, and finally, the building facades must be
accurately identified and extracted. As for rooftops,
obtained textures can be provide as PNG or JPEG files.

• Create 3D buildings with flat roof (by extrusion): given
the building shapes plus their height, typically measured at
their eaves, simple 3D models with flat rooftop can be
obtained. The resulting data format is a GeoJSON file with
a height/elevation attribute to compute the building
extrusion from the ground at run time. This is the model
used to implement the picking functionality.

• Create 3D building with 3D roof: when a Digital Surface
Model (DSM) is available, obtained from LIDAR data or
other acquisition modality, accurate 3D roof shapes can be
obtained to build a more realistic SCDT. The buildings 3D
models can be provided as glTF (GL transmission format)
files, with geo-localization information.

• Create 3D building with photorealistic textures: the 3D
buildings obtained by extrusion or exploiting a DSM can be
enhanced with photorealistic rooftop and façade patterns by
applying textures extracted from RGB images. Textured
building models are saved in glTF files, with geo-
localization information.

• 3D design of High Value Buildings, HVBs: in order to
produce accurate representation of HVBs a manual 3D
design or automatic computer vision techniques (such as
Structure from Motion) can be employed. This requires
precise measurements or specific image/video acquisition
campaign. Additionally, geo-localization information must
be provided. Also in this case, the resulting textured 3D
models can be exported as geo-localized glTF files.

• Integrated view of HVBs + buildings with roof and
facades: the building 3D models and the HVB models are
finally placed into a unique 3D representation exploiting
their geo-localization information, thus obtaining the
complete 3D representation for the SCDT.

The general architecture for distributing SCDT includes a set of
data integrating 3D models, meshes, with DTM, heatmap, traffic
flow, Pins, IOT, POI, etc., as described in the paper.

For the distribution of the data:

• 3D representation File in GeoJSON via HTTPS: it
describes the 3D structure of the city and all information
related to it. It is used to represent the city model in extruded
mode and to retrieve the buildings information or other BIM
data for the picking functionality.

• 3D representation File in glTF/GLB (GLB is the binary
version of glTF) via HTTPS: it describes the 3D structure
of the city in terms of building and their relationships with
the other graphic elements: facades, meshes of HVB,
textures and materials.

• Pattern files via HTTPS: pattern images for facades, roofs,
DTM files in PNG format, Sky texture, etc.,

• GIS server via WMS over https is providing (via
GeoServer, also integrated into Snap4City platform):
orthomaps, maps, heatmaps, animated heatmaps, traffic
flows, animated traffic flows, etc., on the basis of the
portion of the map shown in the window frame.

• SuperService Map of Snap4City platform via smart city
API via https [33], [30] is providing semantic details in
JSON such as: roads graph, POI, IoT data, Pins, cycling
paths, vectorial traffic flows, etc., on the basis of the portion
of the map shown in the window.

IV. MODEL AND REPRESENTATION

The model for creating the 3D representations, which allows
to provide all the above mentioned information, is based on a
hierarchical layered structure depicted in Figure 2 and described
in this sections.

Figure 2: Hierarchical layers structure of the model

The layered solution has been implemented via WebGL API,
in order to process all the data in parallel, thanks to the GPU
passthrough, to this end, the open-source library called Deck.gl
has been used. All the layers needed for the representation of the

Snap4City platform data types have been implemented, and they
are loaded at runtime on user demand. Thanks to the multi-layer
structure of deck.gl, layers have been implemented individually
with their own safe context, to avoid interferences one with each
other. Every layer has its own scope, managing its own data
type. Therefore, in the following we are introducing the
implemented layers to describe data types provided in the
Snap4City 3D representation.

First, the base deck application has been realized by using a
custom implementation and management of the viewState
object, in which all the geographical information for the map
(such as latitude, longitude, zoom, etc.), are defined. We have
also implemented a custom rendering in order to add features
like SkyBox that need direct access to the WebGL context.
Starting from the first layer. The elevation of the terrain has been
modelled by implementing a composite layer called TileLayer,
which is used to divide the maps in multiple tiles with their own
sublayer: for each tile a sublayer called TerrainLayer has been
created. Thus the elevation map, in the form of DTM files, has
been used to create the TerrainLayer 3D model from the map,
and the background orthomap has been used as a texture of the
terrain objects. The result is a 3D representation of terrain with
texture to better represent the territory.

The background orthomaps have been also implemented
through a TileLayer. In this case, we used the BitmapLayer to
display an image in the map. This method has been also used to
represent heatmaps, which are essentials to provide a fast access
/ representation to large amounts of data. In order to implement
heatmap visualization in deck.gl, we used the composite layer
which automatically retrieves heatmaps from a dedicated geo-
server (through several formats, including WMS) and displays
them as an image. Heatmaps can be static or animated; static
heatmaps are viewed as single PNG images, while animated
ones are sent by the geo-server in GIF format, and they are later
divided in multiple images and rendered sequentially with a
customizable delay time.

For the implementation of data coming from different
sources like IoT devices, trajectories, cycling paths, etc., various
layers with a specific JSON mapping have been implemented.
To display paths and geometries, different layers depending on
the type of geometry to be displayed have been used, i.e.
LineLayer for trajectories, PathLayer for the cycling path. IoT
devices are also displayed as pickable markers on the map.
When a user selects one of them, a popup with the sensor
information (static attributes as well as real-time data, if
available) is shown. Whenever the sensor provides real-time
data, they can be displayed on dedicated widgets, such as time
trends, when the user requests them.

3D representation of buildings are provided in two manners:
Extruded and Realistic (meshes, HVB). Extruded buildings are
implemented by using a GeoJSON file, in order to have a faster
loading time, and this is required because this type of buildings
are loaded even when the realistic ones are loaded.

Realistic buildings HVB (presenting photorealistic rooftop
details and eventually facades textures) can be loaded as both
SceneGraph and 3D tiles. In order to implement the picking
functionality we need also to render the extruded buildings
underneath. The Extruded type is totally described in a single

GeoJSON file, where the following elements are defined for
each building: the base polygon, the height, and various other
attributes and information. The GeoJSON file is loaded in a
layer called GeoJSONLayer, and it is responsible to take all the
features in the file and display them on the map, with the base
polygon extruded by its height. In the case of Realistic building
data type, we use the glTF and GLB formats to describe the
scene, and they are loaded by the SceneGraphLayer. This type
of integration works well to achieve impressive visualization
without impacting too much on the application performances.
3D buildings can also be individually picked on map, in order to
see all the building information, besides linking to dedicated
BIM representations or other details, if available.

V. PRODUCTION PROCESS

In this section, we present details of our implemented
subprocesses to (A) extract roof patterns, (B) create 3D building
with flat roof and photorealistic textures, and (C) integrate HVB
and 3D building into a unique 3D representation.

A. Roof pattern extraction

Orthomaps of the city of Florence, kindly provided by the

“Sistema Informativo Territoriale ed Ambientale” of Tuscany

Region was used to obtain the roof’s textures. These RGB

photos are tiles with a resolution of 8200x6200 pixels, with

partial overlap and rough geo-localization in the EPSG 3003

(Monte Mario / Italy zone 1) coordinate system.

To start with, the aerial images and the 2D GIS building

shapes (expressed in the EPSG 4326 coordinate system

(Geodetic Parameter Dataset, Originally created by European

Petroleum Survey Group)) were converted into a common

coordinate reference system. We noticed that by merely

translating the orthographic photos from EPSG 3003 to EPSG

4326 was not convenient, as it produced evident alterations in

the Ground Sample Distance (GSD, i.e., is the distance, in

meters, between pixel centres measured on the ground). To

mitigate this effect and better maintain the GSD, we selected a

third common coordinate system (EPSG 3857 –

WGS84/Pseudo-Mercator) onto which to project both images

and shapes.

Multiple orthomap tiles describing the considered area were

fused into a single mosaic image using the Geospatial Data

Abstraction Library, GDAL (https://gdal.org/). Then, we down

sampled the mosaic image by a factor of 1/4. This size reduction

was crucial in order to obtain a relevant speed-up in the

successive steps, yet without losing accuracy, as the chosen

image resolution allows the rooftop detection and alignment

deep net (see hereafter) to operate optimally.

To detect the rooftops from the orthomaps and align them

with the building shapes, we used the method presented in [23],

based on a double U-Net architecture exploiting multi-

resolution [25] and multi-task learning [26]. The net takes as

input an RGB orthomap and the corresponding cadastral map

(represented as a binary image), and outputs a list of multi-

polygons aligned with the RGB image. In order to obtain the

cadastral map, the 2D shapes of the buildings were converted

into a raster binary image. The output multi-polygons, up-

scaled to take into account the image down-sampling

https://gdal.org/

previously done, were then exploited to both extract rooftop

textures (from the full resolution mosaic) and align them with

the 2D building shapes. An affine transformation to warp the

mosaic Orthomaps and register it w.r.t. the 2D building shapes

was computed. However, using a single transformation for all

the multi-polygons would give rise to local inaccuracies. For

this reason, we computed a dedicated transformation for each

multi-polygon and locally warped the image so as to obtain a

better registration. Specifically, given the vertexes of an aligned

multi-polygon 𝑉𝐴 and the vertexes of the corresponding 2D

shape 𝑉𝑆 an affine transformation 𝑇 was estimated such as

 𝑉𝑆 = 𝑇𝑉𝐴 (1)

Then, according to the estimated 𝑇, the orthomap was warped

and the considered rooftop was extracted. After repeating this

process for all the multi-polygons, a complete warped orthomap

(including only the rooftops) was obtained and exported as

JPEG file. Note that, while exporting the texture image,

different resolution can be used to obtain smaller weights and

faster visualization.

B. Creation of 3D model with flat roof and photorealistic

textures

3D model construction and texturing were carried out with

Blender. The building 3D models were obtained by extrusion

from the 2D shapes exploiting their height attributes (included

in a GeoJSON as above described) with the BlenderGIS library.

Then a UV-map of the roof areas was created by retrieving the

surfaces with normal vectors perpendicular to the main plane,

and the warped orthomap was used to texture the polygons

described in the UV-map using the Python Blender API.

C. HVB integration

Using Blender, we were also able to include and geo-

locating in the map the 3D models of HVBs. For example, as

shown in Figure 3, an accurate 3D reconstructions of Santa

Maria del Fiore Cathedral (Florence Dome) was placed into the

3D representation, thus achieving a nicer final result.

Figure 3: An example of integration of a HVB into the 3D map (in this

case the Santa Maria del Fiore Cathedral in Florence).

The obtained 3D textured models of the buildings as well as

the HVB models were exported in glTF format (including 3D

geometries, textures, and coordinates) ready to be deployed in

the Snap4City platform using the SceneGraphLayer of the

deck.gl framework (https://deck.gl/).

VI. ACCESS AND DISTRIBUTION IN SNAP4CITY

Snap4City is an open-source platform developed at DISIT
Lab, University of Florence (https://www.snap4city.org/), [30]
[31], [32]. The platform manages heterogeneous data sources,
such as: IoT devices (city sensors and actuators, as well as
private devices, supporting a large variety of brokers and
protocols), open data, external services. For each different kind
of data, static attributes (such as geographical information and
other metadata) and also real-time data (when available) are
collected. Device data are semantically indexed in an RDF
Knowledge Base, thus they can be retrieved by dedicated APIs
and exploited by Data Analytics processes and IoT applications
to perform analyses, simulations, forecasts etc. This allows users
to produce new knowledge on data, which can be shown on user
interface through Dashboards and a wide range of widgets
(showing data both in pull and push modalities). The purpose of
integrating the photorealistic 3D city model obtained with the
method described in Section IV into the Snap4City platform is
to provide a Multi-Data map which can allow the visualization
of an interactive 3D environment of the city, with the possibility
of inspecting the different kinds of entities and related data, such
as: IoT devices, Points of Interests (POI), heatmaps, geometries
related to bus routes, cycle paths, traffic flows, etc. In this way,
the Snap4City platform allows to exploit a complete open-
source framework that can collect, process, and manage all the
data needed to obtain a high-fidelity Smart City Digital Twin.

In order to integrate the 3D representations in the Snap4City
platform, the deck.gl open-source library has been used, as
described in Section V. By exploiting the multi-layer structure
of deck.gl, we implemented a distinct layer for every type of data
supported by the platform. All layers can be viewed and
removed dynamically by user choice. An example of the
resulting 3D map is shown in Figure 4: the 3D representations
can be instantiated by users as a customizable widget in their
own dashboards. Figure 4 represents the 3D city representation
with the addition of textures and 3D model enriched with the
textures obtained using the method described in Section V, the
model presented in Section IV and the whole architecture of
Section III. The tool is freely accessible on web and also
includes heatmaps, traffic flow sensors, traffic flow data,
animations, PINs for IOT and POI, etc.

Regarding the implementation in deck.gl, first an IconLayer

was implemented to represent all the IoT devices managed by

the platform. IoT devices are ingested and stored in a semantic

Knowledge Base, and they are classified by semantic

categories. Therefore, a pool with different icons for each type

of device category is used to represent device markers on map.

The user can access to all information given by a specific sensor

and city element by simply clicking on the device PIN; in this

way, a popup is shown presenting static attributes and, when

available, real-time and historical data can be selected and

viewed on dedicated time-trend and single-content widgets.

https://deck.gl/
https://www.snap4city.org/

The code of the open source Snap4City Dashboard Builder is

available at the following GitHube repository:

https://github.com/disit/dashboard-builder.

VII. ROOFTOP EXTRACTION VALIDATION

To obtain a quantitative validation of the rooftop extraction

results on our data, we manually created a set of ground-truth

multi-polygon for 200 buildings scattered uniformly on the

covered area. Then we evaluated the Intersection over Union

(IoU) between the ground-truth and the input (non-aligned) and

the output (aligned) multi-polygons.

In Figure 5, a bar plot showing the IoU score obtained for

each considered building is reported. As can be seen, for almost

all the test cases (only in four cases the input multi-polygons

have higher IoU), the IoU increases using the output multi-

polygons, confirming the effectiveness of the used approach. In

average we obtain an IoU score of 0.7100 for the input multi-

polygons, and 0.8854 for the output multi-polygons after align

them using the deep network, with an increase of almost 17.5%.

VIII. CONCLUSIONS

 In this paper, a system for implementing a 3D city model
with photorealistic texture integrated into a Smart City
framework has been presented. The proposed solution follows a
deep learning approach based on U-Net to detect the rooftops
from aerial images and align them with the 3D map buildings,
which are obtained by extrusion from GeoJSON data. The
solution is implemented in the open-source Snap4City platform
as a multi-layer 3D map, which can be used by users as a widget
on dashboards to visualize a full 3D city environment and a large
variety of data, including IoT devices (city sensors and
actuators, as well as private devices), POI, heatmaps, geometries
and polylines related to cycling paths, bus routes, traffic flow
etc. Specifically, users have the possibility to pick on map the
single city elements and device markers and inspect their data
and attributes. In this way, the proposed solution aims at
providing an easy and smart navigation of the global digital twin
of the city and the related data. The method employed for
rooftop detection and alignment was validated against a set of
200 ground-truth multi-polygons extracted from aerial images
of buildings uniformly scattered in the metropolitan area of
Florence: after the alignment the, IoU score rises from 0.7370 to
0.8848, confirming the validity of the used approach. As a future
work, an automatic procedure is going to be developed, in order

Figure 4: 3D Multi Data Map of Snap4City with addition of textures and mesh based 3D building (the Florence dome) [31], [32].

https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MzI5Mw== accessible to all.

Figure 5: IoU scores for each of the 200 considered buildings. In blue the

scores of the input (non-aligned) multi-polygons, in red the results on the
output (aligned) multi-polygons. As can be seen, IoU increase for almost all

the buildings on the aligned multi-polygons: only in four cases the input

multi-polygons obtained better IoU. Note that results are ordered w.r.t. the
aligned IoU scores for better readability.

https://github.com/disit/dashboard-builder
https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MzI5Mw==

to apply photorealistic texture also to building facades. Many
other architecture details have been omitted for the lack of space
such as the details regarding the content distribution, the
production of facades, the exploitation of Lidar data.

ACKNOWLEDGMENT

Authors would like to thank the HeritData Interreg project.
Snap4City (https://www.snap4city.org) is an open technology
and research by DISIT Lab, University of Florence, Italy..

REFERENCES

[1] K. Chaturvedi, A. Matheus, S. H. Nguyen and T. H. Kolbe, “Securing
Spatial Data Infrastructures for Distributed Smart City applications and
services,” Future Generation Computing Systems, vol. 101, pp. 723-736,
2019.

[2] N. Lafioune and M. St-Jacque, “Towards the creation of a searchable 3D
smart city model,” Innovation & Management Review, vol. 17(3), pp.
285-305, 2020.

[3] G. Gröger and L. Plümer, “CityGML Interoperable semantic 3D city
models,” ISPRS Journal of Photogrammetry and Remote Sensing, pp. 16-
21, 2012.

[4] E. Shahat, C. T. Hyun and C. Yeom, “City Digital Twin Potentials: A
Review and Research Agenda” MDPI, pp. 3, 2021.

[5] D. Jovanovic, S. Milovanov, I. Ruskovski, M. Govedarica, D. Sladic , A.
Radulovic, and V. Pajic, “Building Virtual 3D City Model for Smart
Cities Applications: A Case Study on Campus Area of the University of
Novi Sad,” ISPRS International Journal of Geo-Information, pp. 16-21,
2020.

[6] Helsinki 3D city model. Available online: https://kartta.hel.fi/3d/#/

[7] ETH Zurich VarCity project. Available online:
http://www.varcity.ethz.ch/

[8] Bonczak, B.; Kontokosta, C.E. «Large-scale parameterization of 3D
building morphology in complex urban landscapes using aerial LiDAR
and city administrative data.» Comput. Environ. Urban Syst. pp. 73, pp.
126–142, 2019.

[9] F. Xue, W. Lu, Z. Chen and C. J. Webster, “From LiDAR point cloud
towards digital twin city: Clustering city objects based on Gestalt
principles,” ISPRS J. Photogramm. Remote Sens. pp. 167, pp. 418–431,
2020.

[10] G. Cheng and J. Han, “A survey on object detection in optical remote
sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 117, pp. 11-28, 2016.

[11] J. A. Thompson, J. C. Bell and C. A. Butler, “Digital elevation model
resolution: effects on terrain attribute calculation and quantitative soil-
landscape modeling,” Geoderma, vol. 100, pp. 67-89, 2001.

[12] Y. Ye, J. Shan, L. Bruzzone and L. Shen, “Robust Registration of
Multimodal Remote Sensing Images Based on Structural Similarity,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 55, pp. 2941-
2958, 2017.

[13] M. Izadi and P. Saeedi, “Automatic Building Detection in Aerial Images
Using a Hierarchical Feature Based Image Segmentation,” in 2010 20th
International Conference on Pattern Recognition, 2010.

[14] G. Mountrakis, J. Im and C. Ogole, “Support vector machines in remote
sensing: A review,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 66, pp. 247-259, 2011.

[15] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of
applications and future directions,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 114, pp. 24-31, 2016.

[16] H. Baluyan, B. Joshi, A. Hinai and W. Woon, “Novel Approach for
Rooftop Detection Using Support Vector Machine,” ISRN Machine
Vision, vol. 2013, p. 11, December 2013.

[17] M. Bosch, Z. Kurtz, S. Hagstrom and M. Brown, “A multiple view stereo
benchmark for satellite imagery,” in 2016 IEEE Applied Imagery Pattern
Recognition Workshop (AIPR), 2016.

[18] Y. Zhong, A. Ma, Y. soon Ong, Z. Zhu and L. Zhang, “Computational
intelligence in optical remote sensing image processing,” Applied Soft
Computing, vol. 64, pp. 75-93, 2018.

[19] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin and B. A. Johnson, “Deep learning
in remote sensing applications: A meta-analysis and review,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 152, pp. 166-177,
2019.

[20] M. Chen and J. Li, “Deep convolutional neural network application on
rooftop detection for aerial image,” ArXiv, vol. abs/1910.13509, 2019.

[21] K. He, G. Gkioxari, P. Dollar and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017.

[22] R. Castello, A. Walch, R. Attias, R. Cadei, S. Jiang and J.-L. Scartezzini,
“Quantification of the suitable rooftop area for solar panel installation
from overhead imagery using Convolutional Neural Networks,” Journal
of Physics: Conference Series, vol. 2042, p. 012002, November 2021.

[23] N. Girard, G. Charpiat and Y. Tarabalka, «Aligning and Updating
Cadaster Maps with Aerial Images by Multi-task, Multi-resolution Deep
Learning,» in ACCV, 2018.

[24] O. Ronneberger, P. Fischer and T. Brox, “U-Net: Convolutional Networks
for Biomedical Image Segmentation,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, Cham, 2015.

[25] A. Zampieri, G. Charpiat and Y. Tarabalka, “Coarse to fine non-rigid
registration: a cain of scale-specific neural networks for multimodal
image alignment with application to remote sensing,” ArXiv, vol.
abs/1802.09816, 2018.

[26] S. Ruder, “An Overview of Multi-Task Learning in Deep Neural
Networks,” ArXiv, vol. abs/1706.05098, 2017.

[27] Rotterdam 3D. Available online: https://www.3drotterdam.nl

[28] Berlin 3D, 3dcitydb. Available online:
https://www.3dcitydb.org/3dcitydb-web-
map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.5174797289580

44&longitude=13.411141287558161&height=534.3099172951087&heading=345.29927739769

52&pitch=-

44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fww

w.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin

_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJS

ON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3D

https%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid

%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows

%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3

D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibl

eTiles%3D200

[29] Stockholm Opencities Planner. Available online:
https://eu.opencitiesplanner.bentley.com/stockholm/stockholmvaxer

[30] Nesi, Paolo, et al. "An integrated smart city platform." Semanitic
Keyword-based Search on Structured Data Sources. Springer, Cham,
2017.

[31] P. Bellini, F. Bugli, P. Nesi, G. Pantaleo, M. Paolucci, I. Zaza, "Data Flow
Management and Visual Analytic for Big Data Smart City/IOT", 19th
IEEE Int. Conf. on Scalable Computing and Communication, IEEE
SCALCOM 2019, Leicester,
UK https://www.slideshare.net/paolonesi/data-flow-management-and-
visual-analytic-for-big-data-smart-cityiot

[32] E. Bellini, P. Bellini, D. Cenni, P. Nesi, G. Pantaleo, I. Paoli, M. Paolucci,
"An IoE and Big Multimedia Data approach for Urban Transport System
resilience management in Smart City", Sensors, MDPI,
2021, https://www.mdpi.com/1424-8220/21/2/435/pdf

[33] C. Badii, P. Bellini, A. Difino, P. Nesi, "Sii-Mobility: an IOT/IOE
architecture to enhance smart city services of mobility and
transportation", Sensors, MDPI,
2019. https://doi.org/10.3390/s19010001 https://www.mdpi.com/1424-
8220/19/1/1/pdf

https://kartta.hel.fi/3d/#/
http://www.varcity.ethz.ch/
https://www.3drotterdam.nl/
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://www.3dcitydb.org/3dcitydb-web-map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&latitude=52.517479728958044&longitude=13.411141287558161&height=534.3099172951087&heading=345.2992773976952&pitch=-44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBerlin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Buildings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTexture%26active%3Dtrue%26spreadsheetUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FDataSource%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IBWfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityobjectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPixels%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26maxCountOfVisibleTiles%3D200
https://eu.opencitiesplanner.bentley.com/stockholm/stockholmvaxer
https://www.slideshare.net/paolonesi/data-flow-management-and-visual-analytic-for-big-data-smart-cityiot
https://www.slideshare.net/paolonesi/data-flow-management-and-visual-analytic-for-big-data-smart-cityiot
https://www.mdpi.com/1424-8220/21/2/435/pdf
https://doi.org/10.3390/s19010001%C2%A0%C2%A0
https://www.mdpi.com/1424-8220/19/1/1/pdf
https://www.mdpi.com/1424-8220/19/1/1/pdf

