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Abstract: This paper introduces an extension of the sGLOH2 local image descriptor inspired by RootSIFT “square rooting” as

a way to indirectly alter the matching distance used to compare the descriptor vectors. The extended descriptor, named Roots-

GLOH2, achieved the best results in terms of matching accuracy and robustness among the latest state-of-the-art non-deep

descriptors in recent evaluation contests dealing with both planar and non-planar scenes. RootsGLOH2 also achieves a matching

accuracy very close to that obtained by the best deep descriptors to date. Beside confirming that “square rooting” has benefi-

cial effects on sGLOH2 as it happens on SIFT, experimental evidence shows that classical norm-based distances, such as the

Euclidean and Manhattan distances, only provide suboptimal solutions to the problem of local image descriptor matching. This

suggests matching distance design as a topic to investigate further in the near future.

1 Introduction

Local image descriptors are fundamental for many computer vision
applications such as image stitching [1], three-dimensional recon-
struction [2] and visual odometry [3]. The relevant role played by
local descriptors has granted an active interest on this research topic
over the decades, still evolving together with the demand for the
related applications.

The most common convention is to classify local image descrip-
tors into handcrafted and data-driven [4] according to how descriptor
vectors are extracted from the neighborhood of local keypoints,
carrying salient content in images [5].

Handcrafted descriptors mainly employ histograms to accumulate
statistics reflecting some local patch property. The Scale Invari-
ant Feature Transform (SIFT) descriptor [6], based on gradient
orientation histograms, is the most popular local descriptor, due
to its efficiency, robustness and accuracy in general and common
application scenarios. Other histogram-based descriptors use pixel
ordering [7], Haar wavelets [8], kernel convolutions [9] or intensity
value comparisons [10, 11]. However, most of the histogram-based
descriptors are largely inspired from [12, 13] or even direct vari-
ants of [14–16] SIFT. RootSIFT [15] is a popular SIFT variant that
replaces the Euclidean distance with the Hellinger’s distance, which
is more reliable for histogram comparisons. RootSIFT is nowadays
considered as the true SIFT replacement due to the minimum amount
of changes it requires in the descriptor matching process, and its
improved performances over the original SIFT.

Data-driven descriptors are those whose behavior is tuned and
refined according to data. The aim is to obtain low-dimensional
binary descriptors [17, 18], to find an optimal parameter setup [19,
20], or both these objectives simultaneously [4, 21]. Quite recently,
data-driven deep descriptors [22–24] have emerged, leveraging deep
learning, modern hardware capability offered by GPUs, and theavail-
ability of large datasets for training [25, 26]. Deep descriptors
have shown in recent evaluations to outperform all other kinds of
descriptors [27].

Despite the current research trend, strongly focused on deep
descriptors, handcrafted descriptors still play a key role in descriptor
design. Indeed, often handcrafted descriptors have been the source
of inspiration for successful deep descriptors architectures. This is
especially true for some recent state-of-the-art deep descriptors [28–
30], that can be seen as efficient, parameter-optimized versions of
the handcrafted descriptors under consideration. On the other hand,

when computational efficiency on low-end or restricted hardware is
demanded for, non-deep descriptors that do not mandatorily require
GPUs to run still provide the most efficient solutions.

Notwithstanding the recent advancements in the field, descrip-
tor matching accuracy is still today far from perfect, especially
when considering complex three-dimensional scenes. This justifies
the continue efforts for improving descriptors, both the data-driven
and the handcrafted. Among the latter, the recent shifting Gradient
Local Orientation Histogram doubled (sGLOH2) descriptor [13] is
currently one of the best in terms of matching accuracy. Inspired by
the RootSIFT successful approach, in this paper sGLOH2 is further
improved. The resulting RootsGLOH2 descriptor is shown to yield
the best matching accuracy among state-of-the art non-deep descrip-
tors, as witnessed by the results of recent evaluation contests on both
planar and more challenging non-planar scenes. RootsGLOH2 per-
formance is also very close to that of the best deep descriptors when
the standard matching pipeline is employed.

The paper is organized as follows. Section 2 gives an overview
of the current research on local image descriptors. In Sec. 3, Roots-
GLOH2 is defined after providing a brief description of its sources
of insipration, namely sGLOH2 and RootSIFT. Section 4 reports and
discusses the results of RootsGLOH2 in recent evaluations, where it
was compared with state-of-the-art descriptors. Finally, conclusions
and future work are discussed in Sec. 5.

2 Related work

The approach used by SIFT is easily the most successful one among
those employed for handcrafted descriptor design. Several SIFT
extensions have appeared across the years aimed at improving differ-
ent aspects of the descriptor, from robustness and matching accuracy
to space and computational efficiency, as depicted in Fig. 1. PCA-
SIFT [14] applies Principal Component Analysis (PCA) to the SIFT
vector in order to simultaneously compress data and suppress noise.
Affine SIFT (ASIFT) [31] virtually generates new viewpoints of the
local image patches in order to improve robustness. RootSIFT [15]
efficiently replaces the Euclidean distance with the Hellinger’s dis-
tance, more reliable for histogram comparisons, by simply “square
rooting” the SIFT vector. RootSIFT-PCA [32] further extends Root-
SIFT by also applying PCA compression. Gradient Local Orienta-
tion Histogram (GLOH) [33] replaces the original Cartesian grid of
SIFT with a log-polar grid and applies PCA. In [34], an irregular grid
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Fig. 1: A SIFT-centric taxonomy of local image descriptors. The
proposed RootsGLOH2 is underlined in red. (Best viewed in color.)

with overlapping cells is employed to improve robustness. Multi-
Support Region Order-Based Gradient Histogram (MROGH) [12]
uses instead multiple support regions and a variable grid accord-
ing to an intensity order pooling scheme. Intensity order pooling
allows one to bypass the keypoint patch rotation according to the
canonical orientation, whose estimation can be erroneous. Doing this
before the actual descriptor computation yields a truly rotationally
invariant descriptor. Domain Size Pooling SIFT (DSP-SIFT) [16]
merges gradient data obtained at different scales to improve accu-
racy. In [35], the SIFT behavior is analyzed at different scales of
the original patch using PCA so as to derive a new descriptor. Rota-
tional Invariant Feature Transform (RIFT) [36] replaces the grid with
rings in order to achieve a rotationally invariant descriptor. BIna-
rization of Gradient Orientation Histograms (BIG-OH) [37] gets a
short-length binary descriptor by comparing consecutive SIFT vec-
tor elements. Accumulated Stability Voting (ASV) [38] thresholds
the differences between SIFT vectors for the same patch at different
scales and sums up the results. Linear Discriminant Analysis Hash-
ing (LDAHash) [18] defines thresholds on SIFT linear projections to
achieve a binary descriptor. sGLOH2 [13] defines a rotating SIFT by
arranging a circular grid organized so that discrete rotations of the
local patch can be obtained by circular shift of the descriptor vector.
Binary sGLOH2 (BisGLOH2) [13] further compares sGLOH2 vec-
tor elements to get a binary version of the original descriptor. SIFT
Handed Hierarchical Matching (SIFT-HHM) [39] achieves a fast
match strategy by filtering on the most informative SIFT vector ele-
ments. Similarly, Multi-Resolution Exhaustive Search (MRES) [40]
defines a fast hierarchical cascade matching at increasing resolution
levels.

Among data-driven descriptors, deep descriptors have recently
stepped into the limelight, thanks to the advent of effective Convo-
lutional Neural Network (CNN) architectures, powerful GPUs and
the availability of big data for training. Deep descriptors of the
first generation mainly differed from each other by the loss func-
tion used, from triplet loss [22, 41] to hard negative mining [23] or
ranking [42]. Following the recent trend in deep learning, the last
generation of deep descriptors can rely on an even bigger amount
of data for training with respect to the past [26, 43]. This has
been exploited to constrain more the network architecture to fol-
low specific behaviors [24, 30], either by taking inspiration from
some handcrafted descriptors [28, 29, 43, 44], or by embedding
more a priori geometric knowledge from the data [45]. As a mat-
ter of fact, modern deep descriptors achieved state-of-the-art results
in matching accuracy and, according to the latest comparative eval-
uations [27, 46], currently provide top notch performance in image
matching with local image descriptors.

3 RootsGLOH2

RootsGLOH2 extends the state-of-the-art sGLOH2, a rotating SIFT
providing robust matches, according to the “square rooting” idea
behind RootSIFT. The main features of both sGLOH2 and RootSIFT
will be briefly described hereafter for the sake of completeness.

sGLOH2 is obtained by the concatenation of two sGLOH descrip-
tors [47]. Figure 2 illustrates the main sGLOH property. Follow-
ing the general design of histogram-based descriptors, sGLOH is

Fig. 2: Rotation of an image patch by a factor 2π
m with the super-

imposed sGLOH grid (left), corresponding to a cyclic shift of the
histogram bins inside each ring (right). In the example n = 2 and
m = 4, color labels on the patch grid identify the corresponding gra-
dient orientation histograms on the descriptor vector. (Best viewed
in color.)

upright SIFT

Fig. 3: Descriptor matching accuracy for SIFT, sGLOH and
sGLOH2 (see text for details). (Best viewed zoomed in and in color.)

obtained by a concatenation of weighted oriented gradient his-
tograms (like SIFT), one for each grid region the local keypoint patch
is divided into. Differently from other local descriptors, sGLOH uses
a circular grid of n rings and m sectors, and arranges histograms so
that for each grid region, the first bin corresponds to the orienta-
tion pointing outside and the others follow in clockwise order. This
implies that the minimal discrete rotation of α = 2π

m of the patch
corresponds to a permutation of the descriptor vector, specifically the
one that cyclically shifts bins inside the histogram for each ring, thus
without needing to recompute the descriptor vector from scratch.

sGLOH packs m different descriptors of the same patch at dif-
ferent orientations so that two descriptor vectors H and H ′ are
compared using the distance

D(H,H
′) = min

k=0,...,m−1
D̄(H,H

′

αk) (1)

induced by a generic distance D̄, such as the Euclidean or Manhattan
distance, where H ′

αk corresponds to the permuted descriptor vector

H ′ according to rotation αk. Matching strategies for sGLOH can be
designed so as to exploit the additional orientation information pro-
vided by limiting the rotations to check. This can reduce the number
of wrong matches, since some of these are dropped and cannot be
selected by chance. In particular, the sGOr (shifting Global Orien-
tation) matching strategy uses information provided by the scene
context to get a global reference orientation, under the reasonable
assumption that all keypoints of the scene roughly undergo the same
rotation αg, not known a priori. The range of discrete orientations
in Eq. (1) is modified to k = (g − 1) mod m, g, (g + 1) mod m,
where g ∈ {0, 1, . . . ,m− 1}, can be robustly estimated as the ori-
entation maximizing the number of best matches [47]. In [13], it was
observed that sGLOH matching can suffer of performance degra-
dations when the relative rotation between corresponding patches
approaches the value in-between two discrete rotations, i.e. it is of
the form k 2π

m + π
m for k = 0, . . . ,m− 1. The sGLOH2 descriptor
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was designed to solve this issue: It concatenates the standard sGLOH
descriptor of the original patch with the sGLOH descriptor obtained
after applying a rotation of π

m to the patch. sGLOH2, can handle
up to 2m discrete rotations of π

m degrees. Figure 3 shows SIFT,
sGLOH and sGLOH2 matching accuracy in terms of mean Average
Precision (mAP) for a simple test considering some images matched
against their corresponding rotated versions. mAP is computed as
the average on a set of different test images (see [13] for more
details). sGLOH2 solves sGLOH issues when rotation approaches
the one in-between two consecutive discrete rotations. The gap in
terms of matching accuracy between SIFT and sGLOH2, not so
evident for this simple case, increases when more complex image
transformations than bare rotations are considered (see the experi-
mental section). The upright SIFT, i.e. when keypoint patch is not
rotated according to the canonical orientation [6] before SIFT com-
putation is reported too for completeness. In this sense, sGLOH2 is
a “rotating SIFT”. sGLOH2 matching can also take advantage of
the global reference orientation as for sGLOH, and at the mean-
time speed up by an efficient adaptive run-time cascade filtering
matching. The resulting matching strategy is named sGOr2a⋆ [13].

RootSIFT [15] manipulates SIFT descriptors so that the Euclidean
distance between two RootSIFT descriptor vectors h

′ and w
′

becomes equivalent to the Hellinger’s distance between the cor-
responding original SIFT descriptor vectors h and w, defined as

DH(h,w) =
∑

i

√

hi
∑

j hj

wi
∑

j wj
(2)

The vector element h′i of the RootSIFT descriptor h′ is

h
′

i =

√

hi
∑

j hj
(3)

and similarly for w′. Hence, the squared Euclidean distance between
two RootSIFT descriptors is

‖ h
′ −w

′ ‖2= h
′
h
′⊤ +w

′
w

′⊤ − 2h′
w

′⊤ =

2− 2
∑

i

√

hi
∑

j hj

wi
∑

j wj
= 2− 2DH(h,w) (4)

i.e., it is equal to the Hellinger’s distance up to a constant factor.
The Hellinger’s distance is generally preferable to the Euclidean
distance at comparing histograms [15], of which SIFT descriptors
are a particular instance. The reason for this superiority lies on the
observation that, when matching two histograms, the Euclidean dis-
tance tends to emphasize large errors occurring on a few bins with
respect to small errors on the remaining majority of bins, while the
Hellinger’s distancce does the opposite. As suggested in [13],the
lower order Manhattan distance can also be usefully employed in
the place of the Euclidean distance for mitigating this issue.

According to these observations, the RootsGLOH2 descriptor
vector is defined and computed by “square rooting” the correspond-
ing sGLOH2 vector. Differently from the case of SIFT, sGLOH2
vectors are normalized to sum up to 1 by design, so normalization is
not needed. As with sGLOH2, RootsGLOH2 matching is performed
by the sGOr2a⋆ strategy [13] using the Manhattan distance as match-
ing distance, which was found to perform better than the Euclidean
distance with sGLOH-like descriptors. Obviously, in this case it is
not possible to relate the resulting metric to the Hellinger’s distance,
as it was done before in the Euclidean case. Nevertheless, the key
idea to avoid emphasizing large errors on a few histogram bins at the
expense of small errors on most of the bins is still valid.

4 Evaluation

Two recent contests for local image descriptor matching will be con-
sidered for the evaluation of RootsGLOH2, namely the “Which IS

(a) Graffiti (b) Spidey

(c) Castle (d) Horse

(e) Florence (f) London bridge

Fig. 4: Sample image pairs for the WISW contest in the case of
planar (top row) and non-planar (middle row) scenes, and for the
IMW challenge (bottom row). (Best viewed in color.)

Which contest” (WISW) [27] and the “Image Matching Workshop
challenge” (IMW) [46], held respectively at the “18th International
Conference on Computer Analysis of Images and Patterns (CAIP
2019)” and the “2019 IEEE Conference of Computer Vision and
Pattern Recognition (CVPR 2019)”.

4.1 WISW benchmark setup

WISW relies on the well-consolidated evaluation of correct matches
defined according to the overlap error between putative correspond-
ing patches that, in the case of planar scenes, is the standard
evaluation approach. The Oxford benchmark [33] and its evolution
HPatches [48] are the most representative benchmarks of this kind.
In addition to HPatches, WISW allows for custom patch orientations
to maximize the rotational invariance of the descriptors, and consid-
ers viewpoint transformation combined with illumination changes,
blur and noise effects, instead of analyzing these kinds of transfor-
mations one at a time. WISW results are expressed in terms of mAP
of correct matches. A match is considered correct if the patch repro-
jection overlap error does not exceed 50%. WISW uses 15 different
scenes of 6 images each, of which only one is used as reference
inside each scene, yielding a total of 15× (6− 1) = 75 image pairs.
The scenes include “Bar”, “Boat”, “Graffiti” and “Wall” from the
Oxford dataset, the whole Viewpoint dataset [49] and 6 new scenes,
each including more than one image transformation. Some image
pair examples are shown in Fig. 4 (top row). Evaluation on pla-
nar scenes is not enough to gain an effective insight into descriptor
behavior on non-planar scenes, which represent nowadays the true
field of application for image descriptors. For instance, it would be
quite hard to derive how descriptors work in the presence of self-
occlusions on the basis of planar scene analysis only. In order to
overcome this limitation, WISW incudes a further evaluation on
non-planar scenes according to a piecewise approximation [50] of
the overlap error. In this case the dataset employed in the evaluation
contains images from 35 different scenes used in previous works (19
having 3 images, the remaining 16 with 2 images only), for a total of
19× 3 + 16 = 73 image pairs, some of which are shown in Fig. 4
(middle row).

4.2 IMW benchmark setup

Another possible approach to deal with non-planar scenes is the
one exploited by IMW, that is somewhat complementary to the one
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(a) Graffiti

(b) Fountain

Fig. 5: Examples of planar (top row) and non-planar (bottom row)
image pairs of the WISW contest, with superimposed the optical
flow of correct matches found by RootSIFT (yellow), sGLOH2
(green), RootsGLOH2 (magenta) and SOSNet (blue) according to
the WISW evaluation. (Best viewed zoomed in and in color.)

used in WISW. Specifically, the IMW approach relies on an indi-
rect evaluation of the descriptors according to the reconstruction
quality they achieve when employed in a Structure-from-Motion
(SfM) pipeline, similar to the approach proposed in [51, 52]. In
detail, the state-of-the-art SfM COLMAP [53] is employed to get
the dense 3D ground-truth reconstructions from 11 scenes of popular
landmarks—see Fig. 4 (bottom row) for some sample images. Each
scene is reconstructed from a high number of input images in order
to get high-quality reconstructions. Descriptors are then evaluated
according to the pose estimation error resulting from SfM recostruc-
tion(using only a very small subset of images for each sequence),
or stereo matching. In particular, robust matching by RANSAC is
applied to each possible image pair of the subsets, and the surviv-
ing inliers are used to retrieve the relative pose between the two
cameras. Matching accuracy is then measured by using the angu-
lar difference between the estimated and ground truth vectors for
both rotation and translation. To reduce these to one value, a vari-
able threshold (set to the same value for rotation and translation) is
used in order to determine each pose as correct or not, and the area
under the curve up to a defined angular threshold is finally computed.
According to the IMW organizers, the empirical threshold of 15◦ is
an adequate proxy for wide-baseline stereo matching performance.
Other reconstruction statistics, such as the number of 3D points, the
average keypoint track length, the 3D to 2D keypoint reprojection
error, and the ratio of successful registered images within the model
are also presented, but are less relevant for descriptor evaluation.
As pointed out in [54], the obtained stereo matching results are not
so reliable due to the RANSAC parameter setup of the evaluation.
Hence, only SfM results will be considered hereafter in the analysis
of IMW results.

4.3 WISW benchmark results

Table 1 reports WISW results in terms of mAP according to the
evaluation protocol described in Sec. 4.1. Descriptors are ranked
according to their performances on non-planar scenes, that are more
relevant for practical applications. For a clearer evaluation, keypoints
are all extracted with the same HarrisZ detector [55]. Examples of
correct matches found by RootSIFT, sGLOH2, RootsGLOH2 and
SOSNet according to the WISW ground-truth in complex scenes
for both the planar and non-planar cases are reported in Fig. 5. As
shown by the results, RootsGLOH2 clearly improves upon sGLOH2
by increasing the mAP by about 4% in both the planar and non-
planar cases. This suggests that avoiding to emphasize large errors

Table 1 Results for WISW (see Sec. 4.1) and Sec. 4.3)

mAP (%)

planar non-planar ↓

SOSNet [24] ◦ 76.30 53.40
AffNet+HardNet2 [56] ◦ 74.11 52.34

HardNet2 [26] ◦ 74.29 50.09
L2Net [22] ◦ 69.49 48.79

RootsGLOH2 – • 70.68 48.20
HardNet [23] ◦ 71.49 47.80
GeoDesc [45] ◦ 75.60 47.56
sGLOH2 [13] • 67.25 44.86

DOAP [42] ◦ 69.80 40.66
MKD [9] • 59.52 39.05

RootSIFT [15] • 58.46 37.73
MIOP [7] • 56.83 33.38
LIOP [7] • 54.51 32.05

↓ sorting column ◦ deep descriptor • non-deep descriptor

on a few histogram bins at the expense of a few errors on the vast
majority of bins is effective at improving descriptor distance. More-
over, mAP gap between RootsGLOH2 and the best deep-descriptors
is quite limited: Except for the very recent SOSNet [24], the gap is
no more than 4% for any kind of scene, while this gap is about 8% for
the current second best non-deep descriptor sGLOH2. RootsGLOH2
turns out to be well-aligned in term of matching accuracy with Hard-
Net and L2Net, neglecting the minimal differences from the planar
to the non-planar cases. Additionally, when it comes to non-planar
scene matching, RootsGLOH2 works slightly better than the recent
GeoDesc descriptor, which is comparable to the top best SOSNet
and HardNet2 (reported as HardNetA in the WISW evaluation) on
planar scenes. In this sense GeoDesc appears somewhat overfitted
on planar transformations only at the expense of non-planar scene
transformations, that are more general, complex and relevant for
actual applications. Except for GeoDesc, rank is roughly preserved
between the planar and non-planar evaluation. Notice also that 5% of
mAP discrepancy on a base of 70% mAP, that happens in the planar
case, is less problematic for any application than the same difference
on a base of 50% mAP baseline, obtained for the non-planar case.

4.4 IMW benchmark results

Table 2 reports IMW results, both in terms of pose mAP up to a toler-
ance of 15◦ and in terms of the number of images that were correctly
registered to the model, according to the setup protocol described
in Sec. 4.2. Besides the average mAP results over all the subsets
considered in the SfM, by which descriptors are ranked in the table,
results considering only subsets of 5 and 25 images, i.e., respectively
the second smallest and the largest subset sizes are reported (the
minimum subset size of 3 images is very close to a stereo match-
ing evaluation, and as previously stated it is not reliable). As for
the WISW evaluation (see Table 1) ranking is roughly preserved
among columns. In the case descriptor information and details have
not been yet released, the “na” (not available) mark denotes the
missing reference. Notice that, differently from WISW, IMW does
not limit the keypoint extraction method to use. Since IMW allows
more submissions of the same detector+descriptor pairs with dif-
ferent parameters, in order to better focus on the evaluation, Table 2
only reports results for the best setups, excluding matching strategies
relying on keypoint localization. This choice is motivated by the fact
that in the latter case the evaluation would be somewhat unfair, since
matches for submissions that apply geometric matching strategies
similar to [57, 58] would be clearly better filtered for the successive
RANSAC step, independently from the descriptor employed. Specif-
ically, the default matching strategy for the results reported in the
table is the Nearest Neighbor (NN), except for HarrisZ+RsGLOH2
using sGOr2a⋆, and the descriptors superscripted with “+”, that
use the mutual NN. The maximum number of keypoints allow-
able per image is 8000, except for any version of SuperPoint and
DELF (2048), and ELF-SIFT (512). Inspecting the results, except for
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Table 2 Results for IMW (see Sec. 4.2) and Sec. 4.4)

successfully registered

images (%)mAP at 15◦ (%)

all ↓ 5 25 all 5 25

SIFT+ContextDesc+ [28] ◦ 60.17 53.13 84.15 98.10 96.60 98.30
SIFT+HardNet (Larger Patches) [23] ◦ 54.81 45.11 82.63 97.90 96.10 97.90

Superpoint+ (new version) [na] ◦ 54.40 46.16 81.14 95.60 91.00 97.60
Scale-invariant Desc [59] ◦ 54.27 43.91 83.63 97.60 94.90 98.10
SIFT+ContextDesc [28] ◦ 53.99 43.92 82.95 97.90 95.90 98.10

SIFT+GeoDesc [45] ◦ 53.17 43.05 83.91 97.30 94.50 98.20
HesAffNet+HardNet2 [56] ◦ 52.84 44.00 81.54 96.80 93.70 97.70

SIFT+L2Net [22] ◦ 50.87 40.57 81.20 97.30 94.10 98.00
Hessian+HardNet2 [26] ◦ 50.55 41.40 75.83 95.10 91.00 95.50

HarrisZ+RootsGLOH2 – • 50.40 40.84 80.13 96.60 92.90 98.40
AKAZE+SphereDesc [na] ◦ 48.65 37.51 78.00 96.60 92.70 97.80

Superpoint (new version) [na] ◦ 47.78 36.49 78.21 95.00 89.30 97.40
SIFT+TFeat [60] ◦ 46.43 33.47 78.18 96.50 92.30 97.30

AKAZE (OpenCV) [61] • 42.85 26.77 78.45 94.30 88.00 96.90
SuperPoint [62] ◦ 42.67 31.38 71.69 91.20 85.10 92.30

SIFT (OpenCV) [6] • 41.46 26.74 76.79 93.60 87.00 96.50
D2Net [43] ◦ 41.02 32.44 65.14 93.90 89.90 93.50

SURF (OpenCV) [8] • 30.07 14.51 65.47 90.10 80.40 94.80
Brisk+SSS [na] ◦ 26.94 14.37 55.52 92.90 85.80 95.50
SIFT-AID [63] ◦ 26.88 12.20 59.40 88.70 79.80 92.90

ORB (OpenCV) [21] • 23.07 11.45 51.74 87.60 79.40 91.30
ELF-SIFT [na] ◦ 16.78 6.65 40.87 72.50 70.50 69.50

DELF [30] ◦ 16.29 9.20 33.00 87.90 79.90 90.30

↓ sorting column ◦ deep descriptor • non-deep descriptor
(numerical columns refer to evaluation with different image subset sizes)

the SIFT+ContextDesc+ pair, which employs the very recent Con-
textDesc [28] descriptor with mutual NN, the Harrisz+RootsGLOH2
pair mAP gap with respect to state-of-the-art detector/descriptor pair
using deep learning, is quite limited (less than 5%) as in WISW. For
the second best non-deep descriptor considered, i.e., AKAZE, this
is more relevant (up to about 12%). Notice also that mAP increases
and performance gap decreases as the image initial subset for esti-
mating the SfM model is enlarged. Similar considerations hold for
the number of correctly registered images, where it can also be noted
that for a subset size of 25 images Harrisz+RootsGLOH2 achieve the
topmost rate of registered images, witnessing again the robustness of
RootsGLOH2.

4.5 Running times

Concerning running times, RootsGLOH2 descriptor computation is
practically the same of sGLOH2 (square rooting can be neglected
compared to the other operations needed), which is less than half
of the time needed to compute a RootSIFT descriptor, since patch
rotation in the canonical orientation (and its estimation) needs not
to be computed [13]. For instance, on a Intel i5-2500 CPU @
3.30GHz with 16 Gb of RAM, the extraction of 2048 descriptors
takes more than 2s for SIFT and less than 1s for sGLOH2, while
for deep descriptors based on L2Net (including SOSNet, HardNet2
and Geodesc), excluding patch normalization and canonical orienta-
tion estimation that take more than 1s, 4.5s are needed on a CPU.
For completeness, SIFT GPU implementation is almost 150% faster
than GeoDesc on a NVidia GeForce GTX1080 [45]. On the other
hand, amortized computational time for matching two descriptors,
using single-threaded SSE 4.1 optimized code, changes from about
400 ns to 650 ns as one moves from sGLOH2 to RootsGLOH2.
This is due to the fact that RootsGLOH2 requires float operations
instead of integer operations due to the presence of the square root-
ing operation. For reference, the corresponding amortized matching
time for RootSIFT and any other real-value descriptor, including
deep descriptors, is 50 ns, since there is no need to check distances
at several patch orientations. Finally note that, differently from deep
descriptors, handcrafted descriptors such as RootsGLOH2 do not
need high capability GPU hardware to run efficiently.

5 Conclusion and Future Work

This paper proposed to embed the RootSIFT “square rooting”
idea into the sGLOH2 handcrafted descriptor. The resulting Roots-
GLOH2 descriptor provides clear improvements upon sGLOH2, as
RootSIFT does for SIFT. The results obtained give a further evi-
dence of the fact that both the classical Euclidean and Manhattan
distances (used by SIFT and sGLOH2, respectively) are suboptimal
solutions for the associated histogram-based descriptors, as they tend
to emphasize the importance of large errors on a few histogram bins
instead than that of small errors on the majority of bins. Future work
will be devoted to extending the square rooting concept, by investi-
gating which transformations can be said to be truly optimal for each
given kind of handcrafted descriptor.

The evaluation of RootsGLOH2, taken out according to very
recent benchmark comparing the best and latest descriptors, also
shows that RootsGLOH2 matching accuracy on both the planar and
non-planar cases is very close to that of the top notch deep descrip-
tors, currently the unquestionable rulers of this research area, and
clearly better than the matching accuracy achieved by other non-
deep descriptors. This suggests that investigating on handcrafted
descriptors, spending time and resources, even nowadays is not a
waste of time as it can provide fresh and novel ideas, capable of
making deep descriptors less black-boxed, also considering that the
implicit design of current state-of-the-art deep descriptors is often
inspired by handcrafted descriptor approaches.
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