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Dissecting and Reassembling Color
Correction Algorithms for Image Stitching

Fabio Bellavia and Carlo Colombo

Abstract—This paper introduces a new compositional frame- A. Paper Contributions

work for classifying color correction methods according to their In this paper. we introduce eompositional frameworkor
two main computational units. The framework was used to IS paper, we | u posiu W

dissect fteen among the best color correction algorithms and classifying color correcti(_)n methods in a new way. The idea
the computational units so derived, with the addition of four new stems from the observation that any color correction method

units specially designed for this work, were then reassembled in a can be decomposed into two maemputational Units (CUs)
combinatorial way to originate about one hundred distinct color  These are (1) the low-level color mapodel Estimator (ME)

correction methods, most of which never considered before. that tuall t th | d (2) the high
The above color correction methods were tested on three that actually computes the color maps, and (2) the high-

different existing datasets, including both real and arti cial color  l€vel color mapProber and Aggregator (PAj)that organizes,
transformations, plus a novel dataset of real image pairs catego- combines and applies the color maps. As shown in the block

rized according to the kind of color alterations induced by specic  diagram of Fig. 1, the PA unit (a) receives as input an image
acquisition setups. Differently from previous evaluations, special pair, computes sets of pixel correspondences and (b) outputs

emphasis was given to effectiveness in real world applications . .
such as image mosaicing and stitching, where robustness withthem to the ME unit, then (c) inputs from ME one or more

respect to strong image misalignments and light scattering effects color maps, and nally (d) provides as output the corrected
is required. Experimental evidence is provided for the rst time image. The two CUs are distinct yet mutually interdependent,
in terms of the most recent perceptual image quality metrics, providing input data to each other in steps (b)-(c) that can be
which are known to be the closest to human judgment. iterated according to the PA used.

Comparative results show that combinations of the new com-
putational units are the most effective for real stitching scenarios,
regardless of the speci c source of color alteration. On the other
hand, in the case of accurate image alignment and arti cial color
alterations, the best performing methods either use one of the
new computational units, or are made up of fresh combinations
of existing units.
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I. INTRODUCTION

OLOR correction is an image processing technique with
several applications, from photometric registration in
image mosaicing and stitching [1] to image enhancemefig. 1. Color mapping CUs. Source and target images are shown superim-

and recoloring for visual effects generation [2] Its aim is tBosed before and after color correction and as anaglyphs to emphasize image
’ misalignments. PA determines the image subregions that serve as input to

transfer color properties from a source image to a target imag: and combines the ME output color maps to obtain the nal result (best
In applications such as image mosaicing, it is also required thawed in color and zoomed in).

color attributes remain consistent with the image geometric ] o . .
structures, so as to prevent alterations of the original imageTn& main contributions of this work arise from the above
content at the semantic level. For this purpose, a preliminafgmework, which allowed us both to investigate existing
geometric alignment of the input images is required to obtafiéthods from a new perspective, and to develop more effective
color correspondences. Despite the recent progress in im&§B!tions to the color correction problem. Speci cally:
stitching [3], [4], only a coarse image alignment is often — 15 among the most successful literature approaches were
obtained in practical situations, giving rise to wrong color revisited and categorized according to the speci c ME/PA
correspondences that can remarkably affect the nal results.  pair they employ. The analysis revealed that many meth-
Several color correction algorithms have been proposed and ods share either one of their CUs. As a result, only 12
analyzed in the last few years. Their strengths and weaknesses distinct MEs and 5 distinct PAs were found, to which
have been outlined in recent surveys [5] and evaluations [6], four novel CUs (2 MEs and 2 PAs), expressly designed

that classify color correction methods inteodel-based para- for this work, were added. Sec. Il addresses the above
metric vs model-less non-paramettior local vs global ap- computational unit categorization and design.
proaches (see Sec. Il). — The combinatorial nature of our compositional framework

, . _ led us to perform an exhaustive comparative evaluation
F. Bellavia and C. Colombo are with the Department of Information f all th | . hods th b bled
Engineering, Universit degli Studi di Firenze, Via di S. Marta, 3, 50139 O_a the CO_OI’ correction methods that can be assemble
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different methods, 83 of which never considered befoemploying a look-up table to record the color map. Color
(see Sec. V). correction methods can also be divided iglobal andlocal

As anticipated above, another contribution of this paper @Proaches. While in the former case a single color transfer
the design of four novel CUs (2 MEs and 2 PAs), whicfunction is estimated and applied to the whole image, in the
according to the experiments can be used to build the péadter case multiple color maps are computed for different areas
performing algorithms. The rst ME, name@PS (Gradient Of the image, previously segmented according to their spatial
Preserving Splinelemploys a monotone cubic spline to locally@nd chromatic characteristics.
model the correction function. It takes into account not only The earliest work on color correction can be traced back to
the color values of corresponding image pixels, but also th€inhard [10]. This global approach consists in rearranging the
gradient of both the source and target images to preseﬁ;gor distribution of the target image to have the same mean
the image structure. The second ME, referred toF@PS and variance of the source image. Color space is rst converted
(Fast GPS) introduces an approximated yet faster coarse-tito thel  space representation in order to decorrelate color
ne spline search space reduction with respect to GPS, théfdannels, on which to independently apply the transformation.
extending the idea originally presented in [7]. Of the twén alternative solution is proposed in [11], where a linear
PAs, theLinear Color Propagation (LCPICU is based on the transformation is applied to decorrelate color channels.
approach rst introduced in [7], now also integrating a global Local approaches give generally better and more accurate
color map estimation step and further re nements. The othegsults on complex scenes [12], since the assumption that a
PA, calledBest Local to Global (BLG)extracts local color Single global color palette is suf cient to cover all the color
maps from the input data and globally selects and combin@aPps is often unrealistic. To overcome this issue, Reinhard's
the best ones to form a nal color palette. Both PAs can infépethod can be extended in order to obtain a more accurate
local color properties unattainable by global methods, and the@or map as the combination of several weighted color maps
propagate global color models to the non-overlapping areadter segmenting the image into several regions [11], [13], [14].
the target image. This is achieved, for instance, with mean shift or soft color

As a nal contribution of the paper, a very thoroughS€gmentations.
experimental evaluation of the 98 color correction methods” Very popular model-based color correction approach
was carried out. In particular, besides testing with 127 imade 9ain compensation [1], originally introduced to address
pairs from three different existing datasets [2], [6], [7], w&Ymmetric color balancing in panoramic mosaicing by a
further experimented with a novel dataset of 127 real ima%@ast—square minimization. This method was further improved
pairs (increasing the number of tested image pairs to 258y, introducing block-wise smooth multiple models [15].
speci cally created for this work. Image pairs from this datasé?ther model-based approaches t linear or polynomial least-
are classi ed according to the four main acquisition setug§luares transformations, working simultaneously on all color
giving rise to color alterations. Unlikely previous evaluation&hannels [16]. Models based on weighted af ne transforma-
speci ¢ tests were done in order to assess the robustn&88s [2]. splines [17], Gaussian mixture models [18] and
of the evaluated methods in the presence of hard colepnlinear manifold learning approaches [19] have also been
inconsistencies, such as those due to image misalignmepfigPosed.
and light scattering effects, which is a critical aspect in Straight model-less color histogram transformations can be
real world applications such as image stitching. Moreoveferived by histogram matching [20], and further re ned using
unlike previous evaluations, the image quality metrics used fé@gmentation and Bayesian inference [21]. Since histogram
all the experiments were the recent state-of-theraproved matching is a channel-wise operation, the Radon transform is
Color Image Difference (iCID)neasure [8] and th&eature used in [22] to de ne one-dimensional subspaces on which to
Similarity (FSIM)index [9], which are known to be the closes@PPly the histogram matching; then, back-projection is applied
to human judgment. to return back to the original color space. Color histogram

The remainder of the paper is organized as follows. Sec.P§aks can also be used to de ne image “principal regions’ [23],
addresses related work on color correction. Computatiof@Pdeling a polynomial mapping function between correspond-
units are introduced in Sec. Ill, and results are discussedii§ color histogram peaks of the input images.

Sec. IV. Finally, conclusions are drawn and future work is 1h€ monotone constraint is often imposed to the color map,
outlined in Sec. V. since it holds for the camera radiometric response function that

models the image formation. This constraint is used in the case
of spline-based color map models [17] but also for model-less
approaches. In particular, tensor voting [24] and maximum
Recent surveys on color correction algorithms can be foutikelihood estimation of the brightness transfer function [25]

in [5], [6]. Color correction techniques can be classi ednodel the color correction map according to this constraint.
into model-based parametriand model-less non-parametric  Color mapping requires to nd color correspondences be-
approaches. Model-based parametric approaches assunmwesn the source and target images. In the case of local
known color distribution model for both the source and targetethods, each segmented region should be suf ciently wide
images, to be inferred from the input data. Conversely, o tolerate color correspondence mismatches that can occur
explicit assumptions are made for model-less non-paramettlice to coarse image alignment [21]. Keypoint-based matching
methods, usually inferred directly from color histograms anthn be used to de ne and grow corresponding image regions

Il. RELATED WORK
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instead of segmenting the images [26], thus bypassing the TABLE |
rigid transformation constraint imposed by mosaicing, but also COMPUTATIONAL UNITS SUMMARY.
increasing the risk of color mismatches.

ME color map Model Estimator Section

[1l. COMPOSITIONAL FRAMEWORK I-A

. . . . " R Reinhard's 1

As anticipated in Sec. |, accqrdmg to our comp_osmo.nal CS Correlated Space >
framework, color correction algorithms can be organized into GC Gain Compensation 3
two main CUs (see again Fig. 1). The low-level ME is the SM 3 3 Map _ &
. . . . _ PM 2" Order Polynomial Map 5
inner core of the aIg_onthm. Given as input a gét = AM  Afne Map 6
f(ls(x);1t(x)g of spatially referenced corresponding color PR Principal Regions 7
; ; HM Histogram Matching 8
pairs, wherd s(x) gndlt(x) are thg color values at in the N L T 9
source and target images, respectively, ME generates as output G Gaussian 10
a color mapCp . Assuming that input and output are coarsely MS Monoltomij Spline | 11
: : : : 3MS Correlated Monotone Spline 12
registered 24 bit RGB color imageSp is de ned as GPS Gradient Preserving Spiine 13
FGPS Fast Gradient Preserving Spline 14

Cp:R¥!I RR=U M T (1)

(@
whereT : R®! R",U:R™ ! RS areinvertible, xed, space

projection functions and 2 R™ " is a matrix inducing Section
: . . PA  color map Prober and Aggregator

a linear map. On the other hand, PA provides ME with -8
multiple color correspondence sd®s combines and applies GL  Global 1
the output color map€p , thus synthesizing from the spatially P Pites 2
registered input imageks and I, the nal corrected source CIM  Color In uence Map 3
reg p g t . TS Soft Tai's Segmentation 4
imagel.. For example, a global PA computes only a single MSS Mean Shift Segmentation 5
color correspondence sBtof overlapping pixels between the LCP  Linear Color Propagation 6
; ; : BLG Best Local to Global 7
images, and applies the resulting color m@p to the whole

source imagés. (b)

In the next subsection, the most relevant color correction
methods are revised according to our compositional frame-
work, and theT, U andM functions de ning the correspond-Where Ci = R{DiR; is the eigendecomposition of the
ing MEs are explicitly outlined and reported. Analogously, aRutocovariance matri€; 2 R® * provided byP for image
PAs are discussed in detail in Subsec. IlI-B. A summary &f- The matrix

all MEs and PAs analyzed in this paper is reported in Table | 2 100 R 3
for the readers' convenience. 'e
_ g 010 ¢ é
Ai=do o1 B ©)
|
A. Color Map Model Estimators (MES) 0 00 1
1) Reinhard's (R) [10]: The function translates its input into a zero mean distribution.
T RGBJ 7! [I 1 @ 3) Gain Compensation (GC) [1]:T, U are the identity
' ' function, and 2 3
maps RGB tol space in homogeneous coordinates, " % 0
U=T ! andM 2 R* 4 is computed as M=4 0 ¢ % 5 (1)
2 ., 3 0 0 g
é . 0 ' s 'S‘ where the gairg® for channelk is computed as
M= > t ° s 3 k k 24 N2 2
O 0 - t k- _stg N 8
s t s s g k2 2 2 2 ( )
0 0 O 1 ¢ gt N°g{

where X and K are respectively the mean and standaifith N = jPj, and 4; n two xed constants that avoid the

deviation for channek and imagei 2 fs;tg in the input Z€r0 solution. This formulation is derived from the original

setP. symmetric minimization error [1] by setting to 1 the gain for
2) Correlated Space (CS) [11]The function the target image. o '
4) 3 3 Map (3M) [16]: T, U are the identity function,
T:[RGB]' 7! [RGB 1] (4) whileM 2 R® 2 is obtained by least squares minimization so
that 2 3 2 3

converts its input into homogeneous coordinatésy T 1, . s
and L 4G 5=M4Gs5 ©)
M=A t 1R;r Dt _ZDS_ZRSAS (5) Bt BS
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wherel;(x) =[R; G; B;]" and(ls(x);1¢(x)) 2 P is a color 11) Monotone Spline (MS) [17].Lookup tablesH* are
correspondence. derived according to a channel-wise mapping into splines.
5) 24 Order Polynomial Map (PM) [16]:M 2 R® 7 is In particular, piece-wise cubic splin@& are estimated from
computed analogously to 3M, but on a different space, sinciata independently for each channel, so thdf(x) =
) T 2252 T round(SX(x)). Splines are constrained to be monotone and
T:[RGB] 7 [R"G"B"RGB 1] (10) to have 6 knots, two of them xed so that the color values
andU is the identity function. 0 and 255 map to themselves. Outliers are discarded and the
6) Afne Map (AM) [2]: T maps to homogeneous coordi-spline is re-estimated to improve the model. FunctidndJ
nates as in Eq. (4)) = T 1, and the matriXM, obtained by andM are de ned as for HM.
least square minimization, is constrained to be an af ne map12) Correlated MS (3MS) [17]:This is the proper color

in R3. mapping described in the original paper. The spline model
7) Principal Regions (PR) [23]:T projects into a higher obtained by MS is concatenated with 3M to take into account
dimensionl  space channel correlation.

T:[RGBI' 712 2 2| T (11) 13) Gradient Preserving Spline (GPSThis is the rst of

' ' the two MEs specially designed for this work. Lookup tables
while U : R® | R3 mapsl to RGB. M is computed HX that map channel-wise to splines are used, &nt) and
according to the “principal regions' of images [23]. Principd! are derived as for HM. Although MS also is based on
regions are de ned according to the 3 highest peaks in tpelines, our approach is altogether different as we show in the
hue histogram of the image. For each channel, the averdg#owing. We employ the monotone piecewise Hermite cubic
color value for corresponding principal regions between ti§line interpolation procedure described in [27], with only 4
two images is used to compute a polynomial mapping functiofjots, two of them xed so as to map the 0 and 255 color

yielding a matrixM of the form values to themselves. For each chankgelwe look for the
3 spline minimizing the weighted error sum
a 0 0b 0 O0c X X
M=40d 0 0e 0 f3 (12) EX=w "K+w "k+ Wam "Sm (A7)
0 0 g 0O 0 h i d2f x;y gm2f sitg

8) Histogram Matching (HM) [20]: For each 8-bit RGB among all the possible splines meeting the previous con-
channelk a lookup tableH ¥ (x) = y is de ned, which maps straints. The errors
all the possible 256 color values according to the cumulative
distribution of the corresponding color value channels as
described in [20]. In this case, the function "k

y (18)
i) (19)

T:[RGB]"7'[0 0k O Olewss 0O Olgs20; O (13) are respectively the absolute differences between the mean and
the standard deviations of the color values of the corrected

maps RGB to @56 3 = 768 binary space, i.e. 1o a VeCtorsource imagd . and the target imagk computed inP for
which is zero everywhere except at the positions de ned by th g€ c 9 g P

RGB value.U can be written as the block matrix 2 R3 768 c%annelk, and minimize the color distribution in the spirit of
' 2 o 0 3 Reinhard's method. The term
v

oOx ox
=~

X of @k

u=40 v 05 (14) w10 e v @k 20

0w n=pp @l @dm @
where0 2 R! 256 js a zero vector and = [01 ::: 255} The in Eqg. (17) improves structure similarity with the target image

binary block matrixM is de ned as while also preserving the image structure of the source image

2 IR 0 0o Is, by explicitly taking into account the derivatives for each

M=4 0 LG 0 5 (15) channelk along the dir.ectiond. The error _weightw in
0 0 LB Eq. (17) was set experimentally to 0.5 while the other ve

were set to 0.1 so that all weights add to unity. According
where eacH kX 2 R%56 256 j5 such that to our preliminary tests, variations up to 20% around these
Ky values do not affect signi cantly the nal result.
1 ifHX()=1i . . : .
; (16) Since nding an analytical solution for minimizing the
0 otherwise K . .
error EX is not trivial, an exhaustive search for the two free
9) Truncated Gaussian (TG) [21]Lookup tablesH* are knots de ning the spline is carried out. In the case of 8-bit
derived from local joint image histograms modeled as cotolor channels, imposing only the monotone condition and
lections of truncated Gaussians using a maximum likelihoageglecting that different knot pairs can give rise to the same
estimation procedure. These lookup tables are used to desmine color map, this would yield to an upper bound of
the functionsT, U andM as for HM (see Egs. (13)-(16)). q=(n(n 1)=2)2 = n?(n  1)2=4 different error values to
10) Gaussian (G) [21]:This ME differs from TG only for test, which forn = 256 amounts to about0®, an unfeasible
the use of the classical Gaussian distribution instead of thember in practice. Nevertheless, both the time spent to
truncated Gaussian distribution. evaluate the errdgE* on a given spline and the solution search

LY =
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Fig. 2. The checkerboard-like sampling grids (left) for the two kioisand ~ Fig. 3. A representative splink’ (red) and some splines of its subsgt

K » leading to the spline with minimum error for the correspondencePset (blue), falling inside the band limited by (green). Other representative
Inside a neighborhoo®; (right, yellow squares) of the current regidty, ~ SPlines (purple) cannot fall completely inside the band (yellow) (best
(green square), already computed spline color maygeed splines) for regions Viewed in color and zoomed in).

R (red squares) can be used to restrain the sampled search space (yellow

band) according to their mean (purple spline) and standard deviatiop

in order to obtain the spline color mdp for R (green spline) minimizing where ?(X) and f(x) are respectively the mean and stan-
the error (best viewed in color and zoomed in). dard deviation of the already computédx) mapped values
(purple and yellow splines respectively), aad= 48 is used

space can dramatically be reduced by employing three suitatﬂe!imit the standard deviation value. This heuristic, which

- : o : typically halves the search space, is used only in combination
O e s e e oo et it LGP a1 BLG (e St 18 £ 4 sice oo
. y - E’As are either global or do not provide uniform neighborhood
common images, the error on the mean color vallieis regions
et o e e sl - b peccup mprvenentscanbe bt wih i
reater .than"‘ N 15’ for the best solution so far. the Currenoptimizations, including a pre-computation of the spline maps
greater than T " tfﬁr each knot pair and a parallel implementation of the code.
solution is discarded, thus avoiding the computation of the fu 14) Fast Gradient Preserving Spline (FGPS)in order
K S
error E¥ and saving time. o reduce even further the spline search space of GPS, a

L . . t
1The secli)ndt heuristic ca? be der'l\_/fdl bty observmgd t arse-to- ne approach was designed. The spline search space
(1) some knot arrangements are unlikely to occur and (2)_ ffq;f,;:::gis split into several subset, r > 0, each

perturbing the position of a knot changes only slightly the errar Juced by the representative splife2  through
EX. In particular, for each knot, instead of a full range value
search, we can de ne two uniform square grids in the range Ve=ff2 8 jf'(x) f(x)j tog (23)

of [0; 144] and[111, 255] respectively, with a step of 8 and af r a given thresholdy. In other words, the subs¥t contains

checkerboard-like alternate grid sampling (see Fig. 2). Suc the splines in the search spacethat are inside a band of

sampling scheme reduces the search space to approxima?el ; . .
3 10* possible splines, i.e. by ve orders of magnitude, WhiIWIa/th to aroundf " (see Fig. 3). A greedy strategy is adopted

. o . : %o construct the sef = ff "g of representative splines:,
still maintaining a near-optimal solution. L o . . .
The last heuristic ari f the followi b tion: I|n|t|ally containing only the identity color map, is grown by
€ last heunstic arises from the following observation: erating on the whole search spaceand including at each
the case of PAs working locally (see Sec. 1lI-B), for eac

channel, spline color mapf§ = Gp, of neighboring regions erationi the splinef; under evaluation only if
R; must change smoothly, as they are related to region areas 9x8f" 2F: jf'"(x) fi(x)j>t, (24)
with similar color pro_perUes. Hence, when computing th\‘/avheretl to, i.e. the current splind; is included inF
color mapf ¢ of the regionR ¢, one can take advantage of the : L .
already computed neighborhood color mépsl i b (red only if f; does not fall completely inside a band of width
splinesyin Fig 2). If atgleasb 3 such neigﬂborhood regionstl for each representative splirfé already included inF
exist, then the search space of the two free knotigdfyreen (see Fig. 3). By construction, the union of the subSérts_ .
covers the whole search space, but it does not form a partition,

line) can be statistically constrained within a narrow regioglInCe non-empty intersections exist betwaénsubsets. For
(vellow band). Indeed, given a knot in the forw; f o(x)), Pty :

K o each channek, the errorEX is rst evaluated on the sef
the errorEX is evaluated only if it holds . . . .
of representative splines, by choosing the best representative

ifo(x) T(X)j h 1) splinef " minimizing the errofEX. Then, only splines in the
subsel;- are evaluated. According to our experiments, setting
for both knots de ning the spline, with to = 16 andt; = 12 gives a good compromise between speed

and correctness of the solution, leading to a further reduction
h=min(a;4 ¢)) (22) of the spline search space ranging from two to eight times.
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B. Color Map Probers And Aggregators (PAs)

1) Global (GL): This is the simplest PA. The color map
Cp is applied to the whole source image to obtain the
corrected output imagk;, whereP = f(l5(x);1¢(X)) : x 2
Is\ 1;g contains the color correspondences in the overlapping
area between the source and target imdgesnd| ;.

2) Pitié's (P) [22]: Originally combined with HM, this PA
progressively transforms the source imdgeinto the target
imagel; by projections onto random orthonormal basis sets, |
i.e. by multiplying the color values by a rotation matfx2
R® 2. This 's aimed at decorrelating the signal in the RGE‘ 4. The whole areés [ |t is divided by a grid (green) into overlapping
space in order to support those MEs that operate Chanq#\%‘ge. square regionR (blute square), with central ceR}, (red square).
wise. The input images in the new spageand |, are then Color maps of neighboring cells (yellow squares) can be used to reduce the
passed to ME, where is computed as for GL but in the Spacéaearch space and to spe_zed up_the minimization whe_n GPS or FGPS are used,
induced by the rotation matriR. The corrected image, is S S°¢: !lI/AL3 (best viewed in color and zoomed in).
back-projected into the original RGB space, thus obtaining

I, that is used in the next iteration as the new estimate of 5) Mean Shift Segmentation (MSS) [21Paired in the
More speci cally, the RGB vectof;(x) for the pixelx in the  original paper with TG, this unit considers two distinct mean
generic imagd; is projected as shift segmentations df;. The rst segmentation works on the
whole image, and produces, regionsR,; the second one
le(x) =R1i(x) (25) works only on the overlapping arda\ |; and produces,
regionsR,. As with CIM, the n, setsP, corresponding to
the regionsR, are given to ME, that outputs the color maps

With the assumption that

le(X) = 1s(X) + (26) Cr.- Colors inside eacR, region are corrected accordingly.
Colors inside region® 5 that are outside the overlap area are
one obtains corrected according to the closest color n@p, , where
le(X) =R 1¢(X) = R(1s(X) + )= lo(x)+R (27) k=argmin k g, g, K (31)
so that can be derived in the least square sense by solving®) Linear Color Propagation (LCP):This is the rst of
for all the considerec the two PAs specially designed for this work. This PA com-
pletes and re nes the blending scheme of [1], applying color
R =1g(x) lg(x) (28) correction into non overlapping image areas as the weighted

combination of propagated local color maps with a global
3) Color In uence Map (CIM) [13]: This PA was originally color map.
combined with R. The source imagde is partitioned inton The bounding box ofg [ |; is divided by ag; g, grid
regionsRy by mean shift segmentation [28]. The 9 = into overlapping64 64 pixel regions; the grid step is 32
f(1s(x); 1:(x)) : x 2 R0 of corresponding color values for pixels (see Fig. 4). We denote tith square region bRy,
each regiorR 4 is passed to ME, thus producimgcolor maps and its centraB2 32 grid cell by Ry. The local color maps
Cp,. The nal output image is obtained as the weighted su®@p, are derived for eaclRy, in the overlapping area, where
of each color mafp,, . In particular, de ning the CIM weight P, = f(Is(x);11(X)) : X 2 Rp; Rp Is\ l¢g. In order

w for the regionq on thel  space as to improve method robustness especially in the case of bad
a1 2 image registrationCp, is discarded if the averagens error
w(x;q) = e ) g (29) petweenl andl; in R, exceeds a threshold of 32. Surviving

local color maps are then propagated into the non-overlapping
area by smoothly mixing them with a global color map.
This global color map, referred to &3y, is obtained by

where g, is the mean color value dfs over Rq, the nal
imagel . is obtained as

X w(x: q)Cp. (Is(x)) a weighted average of the local color maps with a channel-
lo(X) = .é’n Pa _S (30) wise monotone piecewise Hermite cubic spline. In detail,
0=1 g=1 w(x; a) indicating with superscripk the k-th color channel, internal

. . knots (x; f K(x)) for the splinef ¥ are such that
Note that a similar approach using manually segmented re- ( () P

. ; X X
gions had alrleady been prpposed in [11]. . fk(x) = - g 1_ _ Céb(ls(x)) (32)

4) Soft Tai's Segmentation (TS) [29Designed to work Jfis=xgl o
in conjunction with R, this PA operates analogously to CIM. (0= x
However, weightsv are obtained directly with the soft colorwherex 2 Is\ |; andj j denotes the set cardinality. Note
segmentation algorithm exploiting Gaussian mixture modeisat in the case of a zero denominator in Eq. (32), no knot is
described in [29]. de ned for x.
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Color mapsCp, are propagated as illustrated in Fig. 5 and
discussed hereafter. The grid of Fig. 4 is employed to create
ag @ binary mask, with values 1 if the corresponding
grid cells include pixels from, and 0 otherwise. Successive "
expansions of the binary mask are then carried out usin
the dilation morphology operator [30] with a squaBe 3 )
kernel, until the resulting area covered by 1's is three times
the initial area. At each dilation step, color ma@s, for
the grid cellsR}, corresponding to new 1's into the mask
are computed by interpolation. For this purpose, assuming T
from Eq. 1 thatCp, = U Mp T with My 2 R™ M2 3
three-dimensional matrif 2 R% 9% (Mim2) j5 created, by
,StaCkmg the matrlcgmb, according to the grid. That, s, @p, Fig. 5. The binary mask on the target image(red boundaries) is expanded
is de ned, My, ;p,:m is them-th element oMy, considered as sequentially through morphological dilation, and its intersection with the
a column vector, withp; ; b, the grid indexes oRy,, otherwise source imagds (blue boundaries) is used for propagating color maps and

b = i ;gomputing the weight mask (lighter red corresponds to later expansion steps
M by:b2;m 0. Color map values corresponding to the grland lower weight values far). Given the initialM (see text) including only

cells added at the current mask dilation step are obtained &) maps for the intersection aréa\ I, (vellow), at each dilation step
convolution of each two-dimensional slice of sige g, convolution is applied to eachl slice (dark green) to propagate color maps.
obtained fromM by iterating over indexm, with a5 5 re- For each slice, only values present at the previous iteration (colors darker than

. . . ] . the kernel center on the right) are used. Kernel weights for slice values not
Welghted binomial ke_mel- The kernel is re-_normallzed fift‘?rfcluded at the previous dilation step are set to zero (white entries) and the
setting to zero the weight values corresponding to zeros in tkenel is re-normalized (best viewed in color and zoomed in).
binary mask.

Once the global and local color maps have been obtained,
they are combined to produce the color corrected image. A
weightz = (1 )=l is associated to each grid cell, whdre
is the dilation step at the time the cell was included into the I
binary mask, and is the nal number of dilations madd ( v

,@$

is set to zero for all the cells in the overlapping area). The 4
weight mapz as well as all slices oM are resized32
to the original image size through bicubic interpolation, thus
obtaining for each pixel locatiorn a weightz(x) and a color (@) (b)
mapCp, . Finally, the corrected source image is computed &% 6 (a) The source input image and (b) the nal corrected imagts
obtained by using the LCP unit in combination with the AM unit. Both images
le(X) = (1 z(x)) Cy(Is(x)) + z(x) Cp, (Is(X))  (33) are superimposed on the input target imagdor a better understating (best

. . viewed in color and zoomed in).
i.e. as the combination of the local propagated color maps

Cp, and the global color ma@y, weighted according to the

distance froml;. An example of the nal outpul. can be RGB color space. The color ma} associated to a quantized
found in Fig. 6. color ¢; is the weighted sum of the best color maps,,,
7) Best Local to Global (BLG):The second original PA for pixels inside the overlapping area
computes an interpolated color palette as in [2]. Grid-wise
color mapsCp, are obtained as for LCP and the best cell C = X I:,D(Ci;X)CPd(X)
index ' R 21, PG X)
d(x) =argmin k Cp, (Is(x)) l¢(x)k (34) o
b

(36)

where linear combinations of color maps are intended in the
is associated to each pair of corresponding color valuspace induced by the transformati@nof ME (see Eg. (1)),
(Is(x); 1¢(x)) in the overlapping area. Note thdtcan differ i.e.

from the cell index the pixel belongs to. aCp, +bGCp, = U (aMy+ bMy) T 37)
The color palette is computed explicitly by quantizing the * Y Y

RGB color space. In particular, each color channel is quantizeghally, the color value of a pixel, even not in the intersection
into g = 21 levels so thaty® = 9261 quantized colors are grea of the input images is computed as
obtained. Color similarityp(c;i; X) between thé-th quantized

color ¢; and the RGB value of the pixel ih is de ned as Ic(x) = Cy(ls(x)) (38)
kei Is(x)k .
peixy= - @ ke TIKQ g where
0 otherwise v=argmin k¢ Is(x) k (39)
1i g

whereQ = 255p 3=qis the maximal Euclidean distance be-
tween two quantized color neighbors in the three-dimensionalthe index of the quantized color closestltgx).
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IV. EVALUATION
A. Experimental Setup

Following the recent literature on the subject [3], [4], [31],
[32], stitching can be regarded as an extension of image
mosaicing to the case where homography constraints are
relaxed and hold only locally, so that registered images are
just coarsely aligned.

For our evaluation, we relied mainly on the protocol de- T T2
scribed in [6] (the most complete comparison of color correc-
tion methods for stitching to date, here signi cantly extended),
which assumes no known color transform model, this being
the most general and realistic way to address the probl Y- 7a_ll_nputt) images (t(;)p rovvl) and the actual overlapping area used in tests
Indeed, most recent datasets avoid to refer to any particu & (best viewed in color).
image acquisition conditions, i.e. operating setups (e.g. single
vs multiple cameras, xed vs changing camera parameters), . . ) . .
due to the impossibility for the common user to have qr other co!or |nco_nS|stenC|es (e.g. a shadowlls presentlln
fully controlled environment and the right level of knowledgéhe source image image but not in the target image), while
and expertise. Nevertheless, we veried experimentally tha2 contains the rgmammg |mages, mqst!y exhibiting a yery
the results of the best color correction methods are virtu::xff’;V:'“'rate geometric registration and art C'?" color alterations
uncorrelated with the acquisition setup and therefore with thge€ the additional material). Notice thag incorporates all
associated color alteration (see Sec. IV-B). the 127 new image pairs _frlom the four groups corresponding to

The protocol of [6] was suitably modi ed so as (a) to takéj'ﬁ.erent a_cqwsmon conditions, res_pgctlvely denote®as.4,
advantage from the improved image quality metrics publish(‘—,(\d1||e D2' mcludes all the synthetic images from [6] and all
later, and (b) to better handle coarsely registered images. WS repainting images from [2].
used image pairs from three different existing datasets, plus £n €ach image pair, we performed two distinct tests in
novel dataset speci cally designed to investigate the behavighich, given the input source and target imadesand I,
of the color correction methods under different acquisitiotie corrected imagk is output and evaluated accordingly. In
conditions. The rst dataset [6] is subdivided into two class§€ rst test, namedr;, we evaluated both the combinations
of 30 real and 40 synthetic scenes. The real scene image$lefIb) and (Ip;1a) as input image pairgls;1¢) that can
this dataset have been obtained from various sources, includ@®y obtained by inverting the role between the source and
image frames from multi-view video applications, photos witfarget images, according to a chosen image quality metric. In
or without ash lighting or under different capture modes, angarticular, the recent iCID measure [8] and FgINhdex [9]
aerial image clips taken in the same place at different timds€. the FSIM index extended to color images) were selected
In the case of synthetic scenes, a perfect image alignm@stthe closest to human judgment. These quality metrics work
exists and color alterations have been obtained by softw&@iter than simpler measures as PSNR [34] and SCIELAB [35]
editing. The second dataset [2] contains 15 already registeftfl, in contrast to the SSIM index [36], can deal with
image pairs maimy taken with different camera types arﬁplor images, which is an essential requirement in our case.
setups, or undergoing palette recoloring. The third dataset frgditionally, in the second tes;, only the image pairs with
is made up of 38 color image pairs, belonging to 6 real ar overlap greater than 25% were selected, landas set to
almost planar scenes, obtained by varying image expos@@ of its overlapping area when computing(of course, the
only. The reader may refer to [2], [6], [7] for further detailsvhole I is used for the comparison agairig), thus gaining
about the transformations involved in the related datase®sfurther insight into the sensitivity of the algorithms with
The novel dataset, explicitly created for this work, contaif€spect to input data size and outliers (see Fig. 7).
127 image pairs taken from real image stitching application We ran all the possible ME/PA combinations, listed in Ta-
scenarios. These image pairs are divided into four groupstié I, for a total ofM =14 7 = 98 different color correction
almost equal size, containing respectively image pairs obtaireddorithms. Matlab code, datasets and low-resolution output
with (1) distinct cameras (NVIDIA Shield Tablet, Huawei P8jmages are freely availadleImplementations of P and TS
Huawei P9 light, SONY SLT-A37), (2) same camera (NVIDIAwere derived respectively from [22] and [6]. Parameters for
Shield Tablet) with locked setup parameters or (3) varyirthe Edison mean shift implementation [28] used by CIM and
ISO, exposure and white balance, and (4) xed parametedSS were tuned on a dataset sample to get the best results.

but different environmental illumination conditions. For all sjnce, whatever the quality metric used, absolute errors may
datasets, image pairs were registered through planar homgry dramatically from an image paft:;1,) to another, in
graphies according to the method described in [33] if th&der to better appreciate the relative differences between the
registration was not already available. The overall set of 2%ferent methodsA; under examination, = 1:::::M , we
image pairs was manually split into two working datasets,

referred to a®; andD,. Speci cally, D; contains 158 real-

istic stitching image pairs with relevant image misalignments https:/drive.google.com/open?id=0BNh0OK9BcIQkt4empQVUSYVEQ
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TABLE Il
SOFT RANK ON DATASETD 1, TEST Ty, BEST FIVE ME/PA PAIRS ARE IN BOLD, DARKER VALUES ARE BETTER(BEST VIEWED IN COLOR).

rg/FSIMc (%) 14/iCID (%) rUFSIMG (%) 1 /iCID (%)
GL LCP BLG CIM MSS TS P| GL LCP BLG CIM MSS TS P GL LCP BLG CIM MSS TS P| GL LCP BLG CIM MSS TS P

R 0.457 0.429 0.538 0.586 0.672 0.475 0.42§|0.745 0.620 0.583 0.976 0.835 0.693 0.660 0.546 0.384 0.300 0.671 0.653 0.522 0.500 |0.875 0.514 0.359 1.174 0.868 0.766 0.748
CS 0.501 0.573 0.513 0.706 2.761 1.392 0.970 [0.769 0.699 0.566 1.208 2.683 1.739 1.424 0.755 0.601 0.272 0.822 3.104 1.687 1.217 |0.994 0.647 0.315 1.418 3.158 2.095 1.736
GC 0.719 0.697 0.506 0.648 0.722 1.117 1.182 |0.830 0.714 0.580 0.901 0.783 1.239 1.335 0.846 0.709 0.317 0.710 0.758 1.281 1.370 |1.181 0.754 0.427 1.075 0.920 1.618 1.782
3M 0.728 0.715 0.790 1.332 0.781 0.753 0.760 |0.735 0.652 0.728 1.494 0.743 0.747 0.750 0.836 0.557 0.489 1.473 0.702 0.793 0.831 |1.046 0.494 0.466 1.842 0.737 0.939 0.997
PM 0.612 1.333 0.789 1.819 0.777 0.693 0.694 |0.647 0.920 0.691 1.961 0.687 0.683 0.683 0.485 1.072 0.441 1.846 0.495 0.496 0.509 |0.482 0.519 0.326 2.084 0.355 0.455 0.466
AM 0.610 0.987 0.744 1.377 0.729 0.615 0.608 |0.692 0.721 0.674 1.515 0.692 0.690 0.687 0.730 0.793 0.430 1.447 0.585 0.648 0.689 |0.726 0.351 0.327 1.602 0.470 0.659 0.700
PR 2101 1.437 0.693 2529 2.300 4.015 4.064 (2.056 1.529 0.658 2.609 2.236 2,520 1.410 0.405 3.000 2.833 4.720 4.767 |2.485 1.571 0.378 3.182 2.772
HM 0.468 0.423, 0.618 0.598 0.659 0.566 0.554 |0.663 0.53§ 0.620 0.835 0.801 0.690 0.669 0.425 0.295 0.384 0.724 0.526 0.487 0.471 |0.657 0.453 0.447 1.168 0.727 0.633 0.605
TG 0.575 0.734 0.748 1.362 0.739 3.950 0.656 0.571 0.657 1.427 0.686 2513 2.978 0.560 0.465 0.453 1.354 0.657 4.394 0.602 0.17% 0.322 1.467 0.539 2.618 3.154

G 0.677 0.879 0.769 1.586 0.899 4.433 0.698 0.629 0.666 1.585 0.748 2.763 3.248 0.681 0.621 0.472 1.617 0.830 4.948 0.635 0.219 0.329 1.664 0.587 2.883 3.452
MS 0.618 0.557 0.630 0.701 0.686 0.686 0.695 |0.711 0.495 0.594 0.877 0.678 0.708 0.712 0.567 0.336 0.361 0.695 0.525 0.572 0.580 |0.670 0.163 0.307 0.944 0.487 0.535 0.532

3MS 0.665 0.592 0.726 0.952 0.743 0.703 0.710 |0.742 0.514 0.663 1.172 0.691 0.704 0.715 0.559 0.304 0.420 0.935 0.518 0.553 0.565 |0.609 0.103 0.335 1.249 0.414 0.492 0.506
GPS0.466 0.303 0.483 0.472 0.559 0.510 0.497 |0.767 0.48% 0.546 0.796 0.788 0.776 0.774 0.488 0.223 0.254; 0.562 0.512 0.524 0.519 |0.840 0.358 0.324 1.014 0.776 0.844 0.856
FGPS0.528 0.31% 0.506 0.515 0.583 0.578 0.598 |0.865 0.49& 0.551 0.874 0.849 0.877 0.889 0.554 0.232 0.268 0.625 0.534 0.605 0.637 |0.948 0.374 0.320 1.142 0.835 0.947 0.979

TABLE Il
SOFT RANK ON DATASETD 2, TEST Ty, BEST FIVE ME/PA PAIRS ARE IN BOLD, DARKER VALUES ARE BETTER(BEST VIEWED IN COLOR).

rg/FSIMc (%) 1g/iCID (%) 1 JFSIMc (%) 1 /iCID (%)
GL LCP BLG CIM MSS TS P| GL LCP BLG CIM MSS TS P| GL LCP BLG CIM MSS TS P GL LCP BLG CIM MSS TS P

R 0.989 0.629 0.39% 0.706 0.872 0.736 1.011 |1.108 0.781 0.482 0.967 0.906 0.799 0.961 |0.967 0.507 0.151 0.635 0.783 0.652 0.932 1.178 0.619 0.187 0.906 0.768 0.674 0.944
CS 0.638 1.248 0.522 0.617 0.829 1.665 |0.784 1.090 0.578 1.014 0.908 2.616 |0.838 1.421 0.310 0.654 0.857 2.096 0.822 1.112 0.288 0.960 0.773 3.329
GC 1.307 1.310 0.560 1.040 1.486 1.176 2.265 |1.204 1.104 0.593 1.118 1.161 1.043 2.455 |1.518 1.445 0.398 1.136 1.675 1.328 2.677 1.776 1.341 0.425 1.386 1.383 1.266 3.408
3M 1.270 0.933 0.630 1.027 1.144 1.023 1.324 |1.004 0.761 0.606 0.982 0.871 0.827 1.064 |1.520 0.963 0.471 1.135 1.199 1.098 1.536 1.536 0.857 0.404 1.270 0.955 0.945 1.500
PM 0.39§ 0.832 0.423 0.519 0.413 0.399 0.434 |0.494 0.735 0.502 0.688 0.46% 0.473 0.502 |0.237 0.702 0.135 0.349 0.12% 0.160 0.229 0.222 0.531 0.160 0.510 0.064, 0.147 0.201
AM 0.497 0.645 0.37% 0.435 0.453 0.443 0.500 |0.560 0.580 0.472 0.662 0.498 0.520 0.553 |0.628 0.647 0.126 0.387 0.356 0.341 0.564 0.526 0.404 0.144 0.484 0.235 0.296 0.475
PR 2.062 1.642 0.425 1.996 3.546 5.387 2.150 1.686 0.502 2.447 2.674 4.317 2.342 2,030 0.185 2.395 4.350 7.168 2,619 2.066 0.218 3.013 3.249 5.935
HM 0.464 0.547 0.636 0.595 0.494 0.472 0.634 |0.591 0.561 0.640 0.652 0.578 0.584 0.641 |0.237 0.377 0.411 0.521 0.193 0.236 0.405 0.368 0.382 0.445 0.720 0.249 0.334 0.387
TG 0.408 0.475 0.471 0.737 0.448 0.437 2.219 |0.505 0.496 0.515 0.854 0.485 0.513 1.556 [0.170 0.259 0.201 0.602 0.119 0.193 2242 0.266 0.210 0.205 0.738 0.119 0.264 1.525

G 0.412 0.490 0.478 0.768 0.460 0.446 2.382 |0.504 0.501 0.520 0.887 0.485 0.514 1.639 (0.179 0.280 0.212 0.641 0.134 0.207 2.420 0.266 0.220 0.215 0.786 0.11% 0.267 1.620
MS 0.709 0.572 0.513 0.596 0.650 0.637 0.607 |0.747 0.595 0.545 0.695 0.657 0.673 0.618 |0.633 0.447 0.283 0.508 0.457 0.511 0.409 0.656 0.411 0.271 0.648 0.404 0.513 0.357

3MS 0.690 0.529 0.478 0.581 0.612 0.592 0.573 |0.725 0.540 0.519 0.681 0.621 0.602 0.596 |0.568 0.363 0.225 0.442 0.347 0.420 0.350 0.514 0.269 0.198 0.526 0.254 0.335 0.310
GPS0.824 0.513 0.399 0.614 0.742 0.623 0.929 (1.088 0.594 0.47§ 0.843 0.846 0.748 1.037 |0.853 0.444 0.153 0.598 0.650 0.548 0.937 1.133 0.451 0.185 0.927 0.697 0.630 1.020
FGPS1.010 0.632 0.403 0.888 1.039 0.817 1.137 |1.380 0.685 0.479 1.099 1.181 0.974 1.267 |1.045 0.593 0.153 0.934 1.026 0.794 1.162 1.524 0.608 0.185 1.384 1.177 0.951 1.308

de ne and use thesoft rank human perception. In order to evaluate a given methpdve

Arlel) = R "(ATals) b))+ @0) ::ompta.re, as it is usual in the literature [6], the corrected and
N WAL Kl ] arget images, i.e.

where"(A;;11;15) is the error, in terms of either iCID or re = r(Aislel) (44)
FSIMc in the overlapping arey\ I, obtained when the color Neyertheless, since in the real case of mosaicing and more
correction methodA; is used with the image paffi1;12),  general stitching applications we are dealing with coarsely
is a small constant value avoiding a zero denominator, andregistered input images, such straightforward comparison, re-
bl1;l2)= min  "(Aj;l1;12) (41) Quiring an almost perfect registration, may lead to erroneous
j=lnM evaluations whatever the image quality measure used [37]. For

is the best value among all methods for the image @airl ») instance, if an object moves between the two input imdges

in the case of the iCID metric. When FS§Mis employed, andl, a color correction method that simply copikspixel

the min function in Eq. (41) must be replaced by theax data intols to get the corrected image would achieve the

function, since FSIM is a similarity measure. The soft rankbest score witir¢, notwithstanding the fact that the object in

r(Ai;l1;12) ranges in[0; 1], since the corrected image is in the wrong location. This is due to

the fact that Eq. (44) ignores altogether the structural content

X (42) of the source imageg; for the sake of comparison. Therefore,

i1 to avoid erroneous comparative results especially in the case

. . f images from datasdd,, composed of real scene data, the
and achieves lower values for better methods. Notice that t%]eethods were tested not only with, but also with the average
soft rank of Eq. (40) is proportional (by the constat) to

between the results of the comparisor ofvith both the input
the error ; = j"(Ai;l1;12) Db(l1;12)+ | normalized with P 6 P

. imagesls andly, i.e.
respect to its average

r(Ai;lg;l) =1

_ rg = B (45)
r(Ailola) 1 — (43)
where
This is more robust and stable than normalizing by the rs = r(Ai;lcls) (46)
maximum error (e.g. removing the worst method does not
change signi cantly the rank). Notice also from Eq. (42) that
the average soft rank value & = & 1% B. Results
A guantitative and exhaustive evaluation of all the possible Tables II-lll show the soft ranksy andr; (expressed as

ME/PA combinations requires a careful selection of the evglercentages, the average error being about 1%, see Sec. IV-A)
uation protocol to avoid results in contrast with the commdior test T; with both FSIM: and iCID, on dataset®; and
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@]1s (b) I () I - FGPS/BLG (d) I - GPS/BLG
(€)1 - FGPS/LCP () lc - GPSILCP @lc-RIP (h) I - HMILCP
(i) I¢c - 3BMS/LCP (i) Ic - MSILCP (K) I - TG/LCP () I¢c - GILCP

Fig. 8. Results on an example image pair (a-b) for the rst four top ranked ME/PA pairs (c-I) on dBtasétst Ty, according tort andrg for FSIMc
and iCID.ls andl . are superimposed dn for a better understanding (best viewed in color and zoomed in).

D,, respectively. Each table entry corresponds to a differesit soft ranks and quality metrics. Additionally, GPS/BLG
ME/PA pair under test. The ve best results obtained for ea@nd PM/TS are among the top ranked pairs with and

soft rank are shown in bold. Subscripts in Table II(lll) refeboth quality metrics, the latter being also top-ranked for
to the associated result examples of Fig. 8(9). r{/iCID. Finally, PM/MSS, TG/MSS and G/MSS are among

According to Table Il, GPS/LCP and its faster counterpalf€ Ve top ranked pairs withr, and both quality metrics
FGPSILCP (both assembled with new CUs proposed in tifiote that PM/MSS is composed of CUs never considered
work), followed by HM/LCP, are the only methods that ranl(og_ether before_). From the visual example of Fig. 9, it is worth
among the best top ve iy with both iCID and FSIM . not!ng that, unlike theDl_ dataset case, there are no strongl_y
Figure 8 shows color correction results obtained by the folPticeable perceptual differences among the best performing
best ME/PA pairs of Table Il on an example image pair dpethod§ for FheDz dqta§et, so that any of the above methods
datasetD;. Visual inspection of Figs. 8(c-l) conrms that Would give visually similar results.
these three methods provide the least number of artifacts angq contrasting conclusions drawn out from e andD
the most natural color of all. Therefore, numerical resulig;iasets are compatible with the different input data employed
are in good accordance with human judgment. However, thehe datasets. In particular, images frdn from realistic
top ve ranked ME/PA pairs withr/FSIMc are completely gcenarios contain more wrong color correspondences and have
different from those obtained with/iCID. There is no_method less content overlap to reconstruct the whole color mapping
that performs clearly better than the others D images fnction. For this kind of images, working (as done e.g. in
with both error metrics. This corroborates our observation gfe gps/Lcp method) on robust characteristics, such as the
Subsec. IV-A that, in the presence of image misalignments, tQ@erage color values and image gradient, yields the most
soft rankr, may not be appropriate for comparing color Corgatisfactory results. This said, it is not true, as one may
rection results, nor be in agreement with perceptual eV'de”F@pothesize, that approaches with fewer parameters are most
Nevertheless, notice that both GPS/LCP and FGPSILCP @8 st and therefore should do better than others. Actually,
also top-ranked for(/FSIMc.. despite of their apparently simple model formulation, GPS

On the other hand, results with both soft ramksindrg on  and FGPS (the best MEs f@ ) have more implicit hidden
datasetD,, containing image pairs with accurate geometriparameters than others. As a matter of fact, error minimization
registration and arti cial color alterations, are more similawith these methods is so complex that we gave up nding an
and consistent (see Table Ill). In particular, the AM/BLG paianalytical, yet approximate, solution, and decided to perform
(BLG being one of the new PAs proposed in this papeg) brute force space search. On the other hand, when color
achieves the top ranked results with all four combinatiort®rrespondences are more complete and correct, and color
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@1ls (b) 1¢ (©) I¢c - AM/BLG (d) 1¢ - GPS/BLG (e)l¢ - RIBLG

@ lc - PM/GL @) lc - GIMSS (h) I - PM/MSS (i) Ic - TGIMSS () I¢c - PMITS

Fig. 9. Results on an example image pair (a-b) for the rst four top ranked ME/PA pairs (c-j) on dBtasétstT,, according torty andrg for FSIMc
and iCID.|s andl are superimposed dn for a better understanding (best viewed in color and zoomed in).

TABLE IV
TopP FIVE ME/PA PAIRS FOR SOFT RANK'g ON EACH TEST AND DATASET, BOLD ENTRIES INDICATE COMBINATIONS OF NEWCUS ONLY.

rq/FSIMc rq/iCID

18t % 2nd % 3d % 4t % 5t % 18t % 2nd % 3d % 4in % 5 %

D1 GPS/LCP 0.303 FGPS/LCP 0.315 HM/LCP 0.423 R/P 0.428 R/ILCP 0.429 GPS/LCP 0.487 FGPS/LCP 0.498 MS/LCP 0.495 3MS/LCP 0.514 HM/LCP 0.538

D2 AM/BLG 0.380 PM/GL 0.398 R/BLG 0.398 GPS/BLG 0.399 PM/TS 0.400 PM/MSS 0.463 PM/TS 0.470 AM/BLG 0.471 GPS/BLG 0.476 FGPS/BLG 0.477

T D11 GPS/LCP 0.255 FGPS/LCP 0.271 CSI/GL 0.315 HM/GL 0.334 HM/LCP 0.335 GPS/LCP 0.533 GPS/BLG 0.540 FGPS/LCP 0.540 FGPS/BLG 0.552 MS/LCP 0.569
1 D1y HM/LCP 0.122 GPS/LCP 0.131 FGPS/LCP 0.155 R/TS 0.158 R/P 0.158 HM/LCP 0.216 GPS/LCP 0.222 GC/LCP 0.234 FGPS/LCP 0.254 R/ILCP 0.255
Di:3 FGPS/LCP 0.411 GPS/LCP 0.413 FGPS/BLG 0.446 GPS/BLG 0.451 CS/BLG 0.474 TG/LCP 0.558 FGPS/BLG 0.562 GPS/BLG 0.567 3MS/LCP 0.578 CS/BLG 0.588
Di:a GPS/LCP 0.342 FGPS/LCP 0.342 3MS/LCP 0.449 MS/LCP 0.451 R/LCP 0.458 MS/LCP 0.449 3MS/LCP 0.456 GPS/LCP 0.497 FGPS/LCP 0.502 TG/LCP 0.532

D1 GPS/LCP 0.319 FGPS/LCP 0.333 R/P 0.385 R/GL 0.412 GPS/GL 0.417 GPS/LCP 0.498 FGPS/LCP 0.516 GPS/BLG 0.523 MS/LCP 0.532 GC/BLG 0.538

D2 AM/BLG 0.385 PM/TS 0.390 PM/GL 0.394 R/BLG 0.407 GPS/BLG 0.408 PM/TS 0.457 AM/BLG 0.469 GPS/BLG 0.473 FGPS/BLG 0.476 PM/BLG 0.476

T D11 GPS/LCP 0.256 FGPS/LCP 0.274 HM/GL 0.322 GPS/TS 0.323 GPS/P 0.323 GPS/BLG 0.515 GPS/LCP 0.519 FGPS/LCP 0.536 GC/BLG 0.537 FGPS/BLG 0.543
2 Do GC/GL 0.077 R/TS 0.093 R/P 0.093 GC/CIM 0.099 R/GC 0.106 3M/GL 0.125 GC/GL 0.127 3M/TS 0.139 3M/P 0.139 GC/MSS 0.154
D13 GPS/LCP 0.391 FGPS/LCP 0.395 GPS/BLG 0.456 HM/GL 0.461 FGPS/BLG 0.472 GPS/BLG 0.558 TG/LCP 0.565 FGPS/BLG 0.569 GPS/LCP 0.581 FGPS/LCP 0.591
D14 GPS/ILCP 0.411 FGPS/LCP 0.412 GPS/GL 0.458 R/GL 0.471 CS/GL 0.491 MS/LCP 0.564 GPS/LCP 0.572 3MS/LCP 0.573 GPS/BLG 0.578 FGPS/LCP 0.584

TABLE V
ToOP FIVE ME/PA PAIRS FOR SOFT RANK'{ ON EACH TEST AND DATASET, BOLD ENTRIES INDICATE COMBINATIONS OF NEWCUS ONLY.
r¢/FSIMc r/iCID

1t % 2nd % 3d % 4th % 5t % 1t % 2ond % 3d % 4th % 5t %

D1 GPS/LCP 0.222 FGPS/LCP 0.232 GPS/BLG 0.254 FGPS/BLG 0.268 CS/BLG 0.272 3MS/LCP 0.103 MS/LCP 0.163 TG/LCP 0.175 G/LCP 0.219 MS/BLG 0.307

D2 TG/MSS 0.119 PM/MSS 0.121 AM/BLG 0.126 G/MSS 0.134 PM/BLG 0.135 PM/MSS 0.064 TG/MSS 0.119 G/MSS 0.119 AM/BLG 0.144 PM/TS 0.147

T D11 GPS/LCP 0.208 FGPS/LCP 0.214 HM/LCP 0.238 GPS/BLG 0.264 CS/BLG 0.282 3MS/LCP 0.118 TG/LCP 0.138 MS/LCP 0.153 G/LCP 0.172 AM/LCP 0.329
1 D1 HM/LCP 0.056 GPS/LCP 0.126 FGPS/LCP 0.139 R/LCP 0.161 MS/LCP 0.198 3MS/LCP 0.049 MS/LCP 0.050 AM/LCP 0.161 3M/LCP 0.164 HM/LCP 0.179
Di.3 GPS/BLG 0.144 FGPS/BLG 0.149 CS/BLG 0.180 3MS/LCP 0.189 GPS/LCP 0.194 3MS/LCP 0.117 TG/LCP 0.124 G/LCP 0.178 CS/BLG 0.198 FGPS/BLG 0.200
Di.4 3MS/LCP 0.118 MS/LCP 0.187 GPS/LCP 0.260 FGPS/LCP 0.264 TG/LCP 0.283 3MS/LCP 0.043 MS/LCP 0.081 TG/LCP 0.111 G/LCP 0.135 GPS/LCP 0.289

D; GPS/LCP 0.210 FGPS/LCP 0.223 GPS/BLG 0.273 HM/LCP 0.287 FGPS/BLG 0.305 3MS/LCP 0.225 MS/LCP 0.252 GPS/BLG 0.274 TG/LCP 0.283 MS/BLG 0.292

D2 PM/BLG 0.127 PM/TS 0.136 AM/BLG 0.139 R/BLG 0.161 GPS/BLG 0.167 PM/TS 0.104 PM/BLG 0.113 AM/BLG 0.129 GPS/BLG 0.168 FGPS/BLG 0.173

T D11 GPS/LCP 0.191 FGPS/LCP 0.201 HM/LCP 0.227 HM/GL 0.262 GC/BLG 0.266 3MS/LCP 0.222 MS/LCP 0.233 TG/LCP 0.282 MS/BLG 0.305 GI/LCP 0.315

D12 HM/LCP 0.070 GPS/LCP 0.123 GC/GL 0.133 GC/CIM 0.136 HM/GL 0.136 MS/LCP 0.127 HM/LCP 0.135 GC/BLG 0.146 3M/GL 0.156 3MS/GL 0.157
Di1:3 GPS/LCP 0.145 HM/GL 0.152 FGPS/LCP 0.158 GPS/BLG 0.159 3MS/LCP 0.183 TG/LCP 0.176 GPS/BLG 0.182 3MS/LCP 0.185 FGPS/BLG 0.207 G/LCP 0.236
D14 GPS/LCP 0.290 3MS/LCP 0.295 FGPS/LCP 0.305 MS/LCP 0.306 TG/LCP 0.359 3MS/LCP 0.244 MS/LCP 0.255 TG/LCP 0.280 GPS/BLG 0.289 FGPS/BLG 0.303

alteration less realistic, such as with tBe input images, linear combinations (e.g. GL and LCP), are mostly unable to
CUs that “over t” the data (e.g. the AM and PM MEs andhandle intra-channel color transformations such as those from
the BLG and MSS PAs) achieve the best accuracy. Notice alsal to green. This does not hold for non-linear PAs (e.g. BLG
that segmentation-based PAs such as MSS and TS are unlikeig MSS).
to give good results ifD;, especially in the non-overlapping
area, yet are expected to do quite wellDs. Similar ranking Concerning image pairs from realistic image stitching sce-
considerations hold in the case of t&st(more detailed results narios, we further evaluated the color correction methods
are reported as additional material), but clearly the quality @tcording to datase®1.1.4 given by splitting the novel 127
the nal corrected image is lower, as less data correspondend®gge pairs created from this work, representing four main
are available as input for the algorithms. sources of color alterations (see Subsec. IV-A). Tables V-V
report the top ve soft ranks ME/PA pairs for each evaluated
An additional observation must be made about MEs workirgst and dataset (detailed results can be found in the additional
channel-wise (i.e. GC, HM, TG, G, GPS, FGPS and MShaterial). According to the previous observations, we focus
in the presence of some limited, application-specic coloour attention only on soft ranky due to the nature of
transformations, such as those employed for palette recolortc@nsidered images. Results show that [y, containing
(see Fig. 10). These MEs, when combined with PAs based iaput images from distinct cameras, GPS/LCP and FGPS/LCP
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TABLE VI
SPEARMAN RANK-ORDER CORRELATION COEFFICIENT (%) FOR
DIFFERENT SOFT RANKS AND IMAGE QUALITY METRICS

FSIMc iCID FSIMc iCID

g rt s TIg re I's lg rt s TIg re s

@1s (b) 1t

o rg 100 81 90 65 43 82 o rg 100 97 89 96 94 57

= . 81100 53 84 78 50 = r; 97 100 77 95 97 47

P rs 90 53100 42 14 90 P rs 89 77 100 80 74 65

o To 65 8 42100 8 51 o Te 96 95 80100 98 61

S re 43 78 14 88 100 21 3 re 94 97 74 98 100 48

= rs 82 50 90 51 21 100 = rs 57 47 65 61 48 100
(@ D1 (b) D2

() lc - AMIBLG () Ic - AM/LCP

color alterations and ner image registration, BLG and MSS
are the best PAs, combined with PM followed by AM, TG, G
and GPS.

C. More about soft ranks and quality metrics

(e)lc - GPS/BLG (®) Ic - GPS/LCP Table VI reports the Spearman rank-order correlation coef -
cient (SROCC) [38] between soft ranks rs andr g, obtained

by comparing the corrected imagde respectively against the
targetl, the sourcels or both input images. Both FSIM
and iCID on theD; andD, datasets (see Subsec. IV-A) are
considered. SROCC is often used for the analysis of image
quality metrics [8], [9], [36], [39].

In the case of iCID vs iCID (bottom right block matrices),
risg is strongly correlated withr¢, less withrs, on bothD;
and D,. Similarly, r; andrg are strongly uncorrelated. This
implies thatr 4 is unlikely to be minimum whet is half way
are still the best methods. In the cd3e, of stitching images betweenl; and | for iCID. Note also that ranks oB, are
from the same camera with a locked setup, the same resultsrase correlated to each other than ranksdyy as accurate
for the whole datasdd; hold for testT;, while GC/GL is the image alignment implies anyway a higher structural similarity
best method for tesk,. This is not surprising, as in te$t the inside image pairs.
number of color correspondence outliers is really high due toln the case of FSIM vs FSIM: (top left block matrices),
the low image overlap, and in the case of a single camera andandrg have a good correlation db, but not onD ;, while
a locked setup the true color transformation is close to tihg has a strong correlation with botl andrs. This is likely
identity map. Therefore, GC/GL, which we found generalldue to the fact that, differently to iCID, FSiMrelies more on
to alter the original colors of s less than other methods,image structural content than on color intensities, as geometric
performs best. On the other hand, fDr.3, where images transformations become stronger.
come from the same camera but with varying ISO, exposureFurther evidence of this behavior can be observed by
and white balance, GPS/BLG and FGPS/BLG do better tharspecting SROCC for FSIM vs iCID (top right and bottom
GPS/LCP and FGPS/LCP, which nevertheless are still amoleft block matrices). OrD (see Table VI(a))r4/iCID is not
the best top-ranked methods. This is probably due to somsteongly correlated withrg/FSIMc, and is more correlated
recoloring effects caused by the white balance adjustmewith r{/FSIMc than with rg/FSIMc. The opposite happens
which alters intra-channel color relations as discussed abot@.ry/FSIMc, which is less correlated with/iCID than with
Finally, for D1.4, having images from a xed camera and/iCID. This does not happen db, (see Table VI(b)), where
varying environmental illumination, GPS/LCP and FGPS/LCI any case 4 is more correlated with; than withrs, thanks
are still the best methods, followed by 3MS/LCP and MS/LCIo the accurate geometric registration of the images.

To summarize, referring again to Tables IV-V, GPS and To summarize, for accurately registered imaggs gives
FGPS are the best MEs in the case of real stitching inpsitnilar results whatever the error quality metric used (FSIM
images, either paired with LCP (bold black entries) or, ior iCID), and is more in accordance with than withrg, as
the case of intra-channel transformation, with BLG (bold reguality metrics are designed to privilege more color content
entries). Moreover, LCP and BLG are generally the best PAlsan structural context. On the other hand, for coarsely reg-
for other MEs. For what concerns real stitching applicationstered images;,4/FSIMc tends to emphasize someway more
we can conclude that there is no evidence that a given soutieanr /iCID the structural context dfs (taken into account by
of color distortion noticeably affects the output of the best), than the color content df (taken into account by;). As
color correction methods. Conversely, in the case of arti cia result, special care should be taken when using Table Il to

() ¢ - TG/BLG (h) I¢ - TG/LCP

Fig. 10. Example of different outputs for intra-channel color transformatio
(best viewed in color and zoomed in).
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TABLE VII MEs and 2 PAs), that were found to be the building material
AVERAGE RUNNING TIME (S), DARKER VALUES ARE BETTER(BEST for the best performlng algorlthms
VIEWED IN COLOR). . .
) In order to evaluate all possible 98 color correction methods
GL P BLG _CM  Mss  Ts P that arise from the proposed framework, image pairs from
R 038 241 1844 956 1284 33408  9.04 several distinct datasets were used. Differently from previous
Cs 1.02 211 5.51 7.94 11.63 336.18 4.04 . . .
GC 113 187 513 758 1127 33518  3.82 evaluations, our tests focused on performance evaluation in the
3M 1.05 211 5.40 7.67 11.65 337.18 4.37 . . . . . .
PM 114 240 597 788 1164 33670 563 presence of image misalignments, bearing in mind real world
A oL 208 35 pE oS wmes 3% applications such as image mosaicing and stitching. To the best
B 51t 10vee 10vas sony sea ol S of our knowledge, this is the rst evaluation on so big a dataset,
G .46 .08 2.28 9.89 2.13 320.46 24.80 ici i i H i i
Ve Tes 008 1228 988 1313 mae g0 explicitly takes into account coarse image registration issues,
3MS 1.73 16.66 14.81 10.51 13.48 322.88 31.04 -Of- -
MS 173 1666 1481 1051 1348 32288 and is also t'he rst to employ the latest state-of-the .art image
FGPS 1355 3143 2870 19205 134.81 368.25 quality metrics, known to be the closest to human judgment.

According to our comparative evaluations, the GPS/LCP and

FGPS/LCP methods, built upon our proposed CUs, achieved
select a good color correction method for coarsely registergg top ranking and obtained the most robust results in the
images. To be sure that the chosen method works reasongll¥e of real stitching scenarios. In the presence of accurate
well, it should have a high rank with bothy/FSIMc and  image registration and arti cial color alterations, AM/BLG,
rg/iCID, and not with only one of them. Following this\yhose PA was also proposed in this paper, obtained the most
observation, we can conclude that, as already emerged frgatyrate results, followed by PM/MSS, which is an original
the analysis of Table I, both GPS/LCP and FGPS/LCP aggmbination of existing CUs.
ideal candidates for color correction with coarsely registered g, compositional framework is quite general. Therefore,
images, as they rank among the rst witly whatever the e plan as future work to add further CUs from existing
quality metric, and are also visually in accordance with huma®yor correction methods which were not considered in this

judgment. paper. We also plan to extend the datasets and the quality
assessment metrics employed, for instance by applying on
D. Running Time accurate registered images known geometric transformations

Table VII shows the average running time for input imagetg mimic a coarse image alignment, thus making the choice

of about800 600 pixels. Times refer to our 6 core multi-©F the ground-truth and of the error metrics more reliable.

threaded Matlab impleméntation on a Intel i7 at 4GHz Even more importantly, we think that an interesting direction
Concerning the running time for PAs, GL is obviousiy théor future research is the investigation of computational chains

fastest with any ME, followed by LCP and BLG, both workin omposed Qf more than one pair of ME and PA, Wh.'Ch CO.U|d

block-wise on the images. CIM and MSS, which are bas ove effec_:tlve at overcoming the weaknesses of a given single

on mean shift segmentation, come next, followed by P, wh F/PA palr.

combined with all but GPS, FGPS and TG. The worst running

times are obtained with TS whichever ME, and by P when ACKNOWLEDGMENTS
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