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Dissecting and Reassembling Color
Correction Algorithms for Image Stitching

Fabio Bellavia and Carlo Colombo

Abstract—This paper introduces a new compositional frame-
work for classifying color correction methods according to their
two main computational units. The framework was used to
dissect �fteen among the best color correction algorithms and
the computational units so derived, with the addition of four new
units specially designed for this work, were then reassembled in a
combinatorial way to originate about one hundred distinct color
correction methods, most of which never considered before.

The above color correction methods were tested on three
different existing datasets, including both real and arti�cial color
transformations, plus a novel dataset of real image pairs catego-
rized according to the kind of color alterations induced by speci�c
acquisition setups. Differently from previous evaluations, special
emphasis was given to effectiveness in real world applications
such as image mosaicing and stitching, where robustness with
respect to strong image misalignments and light scattering effects
is required. Experimental evidence is provided for the �rst time
in terms of the most recent perceptual image quality metrics,
which are known to be the closest to human judgment.

Comparative results show that combinations of the new com-
putational units are the most effective for real stitching scenarios,
regardless of the speci�c source of color alteration. On the other
hand, in the case of accurate image alignment and arti�cial color
alterations, the best performing methods either use one of the
new computational units, or are made up of fresh combinations
of existing units.

Index Terms—Color correction, compositional framework, im-
age stitching, image mosaicing.

I. I NTRODUCTION

COLOR correction is an image processing technique with
several applications, from photometric registration in

image mosaicing and stitching [1] to image enhancement
and recoloring for visual effects generation [2]. Its aim is to
transfer color properties from a source image to a target image.
In applications such as image mosaicing, it is also required that
color attributes remain consistent with the image geometric
structures, so as to prevent alterations of the original image
content at the semantic level. For this purpose, a preliminary
geometric alignment of the input images is required to obtain
color correspondences. Despite the recent progress in image
stitching [3], [4], only a coarse image alignment is often
obtained in practical situations, giving rise to wrong color
correspondences that can remarkably affect the �nal results.

Several color correction algorithms have been proposed and
analyzed in the last few years. Their strengths and weaknesses
have been outlined in recent surveys [5] and evaluations [6],
that classify color correction methods intomodel-based para-
metric vs model-less non-parametric, or local vs global ap-
proaches (see Sec. II).
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A. Paper Contributions

In this paper, we introduce acompositional frameworkfor
classifying color correction methods in a new way. The idea
stems from the observation that any color correction method
can be decomposed into two mainComputational Units (CUs).
These are (1) the low-level color mapModel Estimator (ME),
that actually computes the color maps, and (2) the high-
level color mapProber and Aggregator (PA), that organizes,
combines and applies the color maps. As shown in the block
diagram of Fig. 1, the PA unit (a) receives as input an image
pair, computes sets of pixel correspondences and (b) outputs
them to the ME unit, then (c) inputs from ME one or more
color maps, and �nally (d) provides as output the corrected
image. The two CUs are distinct yet mutually interdependent,
providing input data to each other in steps (b)-(c) that can be
iterated according to the PA used.

Fig. 1. Color mapping CUs. Source and target images are shown superim-
posed before and after color correction and as anaglyphs to emphasize image
misalignments. PA determines the image subregions that serve as input to
ME and combines the ME output color maps to obtain the �nal result (best
viewed in color and zoomed in).

The main contributions of this work arise from the above
framework, which allowed us both to investigate existing
methods from a new perspective, and to develop more effective
solutions to the color correction problem. Speci�cally:

– 15 among the most successful literature approaches were
revisited and categorized according to the speci�c ME/PA
pair they employ. The analysis revealed that many meth-
ods share either one of their CUs. As a result, only 12
distinct MEs and 5 distinct PAs were found, to which
four novel CUs (2 MEs and 2 PAs), expressly designed
for this work, were added. Sec. III addresses the above
computational unit categorization and design.

– The combinatorial nature of our compositional framework
led us to perform an exhaustive comparative evaluation
of all the color correction methods that can be assembled
with the available MEs and PAs, for a total of14� 7 = 98



DRAFT 2

different methods, 83 of which never considered before
(see Sec. IV).

As anticipated above, another contribution of this paper is
the design of four novel CUs (2 MEs and 2 PAs), which
according to the experiments can be used to build the best
performing algorithms. The �rst ME, namedGPS (Gradient
Preserving Spline), employs a monotone cubic spline to locally
model the correction function. It takes into account not only
the color values of corresponding image pixels, but also the
gradient of both the source and target images to preserve
the image structure. The second ME, referred to asFGPS
(Fast GPS), introduces an approximated yet faster coarse-to-
�ne spline search space reduction with respect to GPS, thus
extending the idea originally presented in [7]. Of the two
PAs, theLinear Color Propagation (LCP)CU is based on the
approach �rst introduced in [7], now also integrating a global
color map estimation step and further re�nements. The other
PA, calledBest Local to Global (BLG), extracts local color
maps from the input data and globally selects and combines
the best ones to form a �nal color palette. Both PAs can infer
local color properties unattainable by global methods, and then
propagate global color models to the non-overlapping area of
the target image.

As a �nal contribution of the paper, a very thorough
experimental evaluation of the 98 color correction methods
was carried out. In particular, besides testing with 127 image
pairs from three different existing datasets [2], [6], [7], we
further experimented with a novel dataset of 127 real image
pairs (increasing the number of tested image pairs to 254),
speci�cally created for this work. Image pairs from this dataset
are classi�ed according to the four main acquisition setups
giving rise to color alterations. Unlikely previous evaluations,
speci�c tests were done in order to assess the robustness
of the evaluated methods in the presence of hard color
inconsistencies, such as those due to image misalignments
and light scattering effects, which is a critical aspect in
real world applications such as image stitching. Moreover,
unlike previous evaluations, the image quality metrics used for
all the experiments were the recent state-of-the-artimproved
Color Image Difference (iCID)measure [8] and theFeature
Similarity (FSIM)index [9], which are known to be the closest
to human judgment.

The remainder of the paper is organized as follows. Sec. II
addresses related work on color correction. Computational
units are introduced in Sec. III, and results are discussed in
Sec. IV. Finally, conclusions are drawn and future work is
outlined in Sec. V.

II. RELATED WORK

Recent surveys on color correction algorithms can be found
in [5], [6]. Color correction techniques can be classi�ed
into model-based parametricand model-less non-parametric
approaches. Model-based parametric approaches assume a
known color distribution model for both the source and target
images, to be inferred from the input data. Conversely, no
explicit assumptions are made for model-less non-parametric
methods, usually inferred directly from color histograms and

employing a look-up table to record the color map. Color
correction methods can also be divided intoglobal and local
approaches. While in the former case a single color transfer
function is estimated and applied to the whole image, in the
latter case multiple color maps are computed for different areas
of the image, previously segmented according to their spatial
and chromatic characteristics.

The earliest work on color correction can be traced back to
Reinhard [10]. This global approach consists in rearranging the
color distribution of the target image to have the same mean
and variance of the source image. Color space is �rst converted
into thel�� space representation in order to decorrelate color
channels, on which to independently apply the transformation.
An alternative solution is proposed in [11], where a linear
transformation is applied to decorrelate color channels.

Local approaches give generally better and more accurate
results on complex scenes [12], since the assumption that a
single global color palette is suf�cient to cover all the color
maps is often unrealistic. To overcome this issue, Reinhard's
method can be extended in order to obtain a more accurate
color map as the combination of several weighted color maps
after segmenting the image into several regions [11], [13], [14].
This is achieved, for instance, with mean shift or soft color
segmentations.

A very popular model-based color correction approach
is gain compensation [1], originally introduced to address
symmetric color balancing in panoramic mosaicing by a
least-square minimization. This method was further improved
by introducing block-wise smooth multiple models [15].
Other model-based approaches �t linear or polynomial least-
squares transformations, working simultaneously on all color
channels [16]. Models based on weighted af�ne transforma-
tions [2], splines [17], Gaussian mixture models [18] and
nonlinear manifold learning approaches [19] have also been
proposed.

Straight model-less color histogram transformations can be
derived by histogram matching [20], and further re�ned using
segmentation and Bayesian inference [21]. Since histogram
matching is a channel-wise operation, the Radon transform is
used in [22] to de�ne one-dimensional subspaces on which to
apply the histogram matching; then, back-projection is applied
to return back to the original color space. Color histogram
peaks can also be used to de�ne image `principal regions' [23],
modeling a polynomial mapping function between correspond-
ing color histogram peaks of the input images.

The monotone constraint is often imposed to the color map,
since it holds for the camera radiometric response function that
models the image formation. This constraint is used in the case
of spline-based color map models [17] but also for model-less
approaches. In particular, tensor voting [24] and maximum
likelihood estimation of the brightness transfer function [25]
model the color correction map according to this constraint.

Color mapping requires to �nd color correspondences be-
tween the source and target images. In the case of local
methods, each segmented region should be suf�ciently wide
to tolerate color correspondence mismatches that can occur
due to coarse image alignment [21]. Keypoint-based matching
can be used to de�ne and grow corresponding image regions
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instead of segmenting the images [26], thus bypassing the
rigid transformation constraint imposed by mosaicing, but also
increasing the risk of color mismatches.

III. C OMPOSITIONAL FRAMEWORK

As anticipated in Sec. I, according to our compositional
framework, color correction algorithms can be organized into
two main CUs (see again Fig. 1). The low-level ME is the
inner core of the algorithm. Given as input a setP =
f (I s(x); I t (x)g of spatially referenced corresponding color
pairs, whereI s(x) and I t (x) are the color values atx in the
source and target images, respectively, ME generates as output
a color mapCP . Assuming that input and output are coarsely
registered 24 bit RGB color images,CP is de�ned as

CP : R3 ! R3 = U � M � T (1)

whereT : R3 ! Rn , U : Rm ! R3 are invertible, �xed, space
projection functions andM 2 Rm � n is a matrix inducing
a linear map. On the other hand, PA provides ME with
multiple color correspondence setsP, combines and applies
the output color mapsCP , thus synthesizing from the spatially
registered input imagesI s and I t the �nal corrected source
image I c. For example, a global PA computes only a single
color correspondence setP of overlapping pixels between the
images, and applies the resulting color mapCP to the whole
source imageI s.

In the next subsection, the most relevant color correction
methods are revised according to our compositional frame-
work, and theT, U andM functions de�ning the correspond-
ing MEs are explicitly outlined and reported. Analogously, all
PAs are discussed in detail in Subsec. III-B. A summary of
all MEs and PAs analyzed in this paper is reported in Table I
for the readers' convenience.

A. Color Map Model Estimators (MEs)

1) Reinhard's (R) [10]: The function

T : [R G B ]T 7! [l � � 1]T (2)

maps RGB to l�� space in homogeneous coordinates,
U = T � 1, andM 2 R4� 4 is computed as
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where � k
i and � k

i are respectively the mean and standard
deviation for channelk and imagei 2 f s; tg in the input
setP.

2) Correlated Space (CS) [11]:The function

T : [R G B ]T 7! [R G B 1]T (4)

converts its input into homogeneous coordinates,U = T � 1,
and

M = A � 1
t RT

t D
� 1=2

t D1=2
s RsAs (5)

TABLE I
COMPUTATIONAL UNITS SUMMARY.

SectionME color map Model Estimator
III-A

R Reinhard's 1
CS Correlated Space 2
GC Gain Compensation 3
3M 3 � 3 Map 4
PM 2nd Order Polynomial Map 5
AM Af�ne Map 6
PR Principal Regions 7

HM Histogram Matching 8
TG Truncated Gaussian 9

G Gaussian 10
MS Monotone Spline 11

3MS Correlated Monotone Spline 12
GPS Gradient Preserving Spline 13

FGPS Fast Gradient Preserving Spline 14

(a)

SectionPA color map Prober and Aggregator
III-B

GL Global 1
P Pitié's 2

CIM Color In�uence Map 3
TS Soft Tai's Segmentation 4

MSS Mean Shift Segmentation 5
LCP Linear Color Propagation 6
BLG Best Local to Global 7

(b)

where Ci = R T
i Di Ri is the eigendecomposition of the

autocovariance matrixCi 2 R3� 3 provided byP for image
I i . The matrix
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translates its input into a zero mean distribution.
3) Gain Compensation (GC) [1]:T , U are the identity

function, and

M =

2

4
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3

5 (7)

where the gaingk for channelk is computed as
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� k
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with N = jPj , and� g; � N two �xed constants that avoid the
zero solution. This formulation is derived from the original
symmetric minimization error [1] by setting to 1 the gain for
the target image.

4) 3 � 3 Map (3M) [16]: T, U are the identity function,
while M 2 R3� 3 is obtained by least squares minimization so
that 2
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whereI i (x) = [ Ri Gi B i ]T and (I s(x); I t (x)) 2 P is a color
correspondence.

5) 2nd Order Polynomial Map (PM) [16]: M 2 R3� 7 is
computed analogously to 3M, but on a different space, since

T : [R G B ]T 7! [R2 G2 B 2 R G B 1]T (10)

andU is the identity function.
6) Af�ne Map (AM) [2]: T maps to homogeneous coordi-

nates as in Eq. (4),U = T � 1, and the matrixM, obtained by
least square minimization, is constrained to be an af�ne map
in R3.

7) Principal Regions (PR) [23]:T projects into a higher
dimensionl�� space

T : [R G B ]T 7! [l2 � 2 � 2 l � � 1]T (11)

while U : R3 ! R3 maps l�� to RGB. M is computed
according to the `principal regions' of images [23]. Principal
regions are de�ned according to the 3 highest peaks in the
hue histogram of the image. For each channel, the average
color value for corresponding principal regions between the
two images is used to compute a polynomial mapping function,
yielding a matrixM of the form

M =

2

4
a 0 0 b 0 0 c
0 d 0 0 e 0 f
0 0 g 0 0 h i

3

5 (12)

8) Histogram Matching (HM) [20]: For each 8-bit RGB
channelk a lookup tableH k (x) = y is de�ned, which maps
all the possible 256 color values according to the cumulative
distribution of the corresponding color value channels as
described in [20]. In this case, the function

T : [R G B ]T 7! [0 � � � 0 1R +1 0 � � � 0; 1G+256 0 � � � 0 1B +512 0; � � � 0]T (13)

maps RGB to a256� 3 = 768 binary space, i.e. to a vector
which is zero everywhere except at the positions de�ned by the
RGB value.U can be written as the block matrixU 2 R3� 768

U =

2

4
v 0 0
0 v 0
0 0 v

3

5 (14)

where0 2 R1� 256 is a zero vector andv = [0 1 : : : 255]. The
binary block matrixM is de�ned as

M =

2

4
LR 0 0
0 LG 0
0 0 LB

3

5 (15)

where eachLk 2 R256� 256 is such that

Lk
i;j =

�
1 if H k (j ) = i
0 otherwise

(16)

9) Truncated Gaussian (TG) [21]:Lookup tablesH k are
derived from local joint image histograms modeled as col-
lections of truncated Gaussians using a maximum likelihood
estimation procedure. These lookup tables are used to de�ne
the functionsT, U andM as for HM (see Eqs. (13)-(16)).

10) Gaussian (G) [21]:This ME differs from TG only for
the use of the classical Gaussian distribution instead of the
truncated Gaussian distribution.

11) Monotone Spline (MS) [17]:Lookup tablesH k are
derived according to a channel-wise mapping into splines.
In particular, piece-wise cubic splinesSk are estimated from
data independently for each channel, so thatH k (x) =
round(Sk (x)) . Splines are constrained to be monotone and
to have 6 knots, two of them �xed so that the color values
0 and 255 map to themselves. Outliers are discarded and the
spline is re-estimated to improve the model. FunctionsT, U
andM are de�ned as for HM.

12) Correlated MS (3MS) [17]:This is the proper color
mapping described in the original paper. The spline model
obtained by MS is concatenated with 3M to take into account
channel correlation.

13) Gradient Preserving Spline (GPS):This is the �rst of
the two MEs specially designed for this work. Lookup tables
H k that map channel-wise to splines are used, andT, U and
M are derived as for HM. Although MS also is based on
splines, our approach is altogether different as we show in the
following. We employ the monotone piecewise Hermite cubic
spline interpolation procedure described in [27], with only 4
knots, two of them �xed so as to map the 0 and 255 color
values to themselves. For each channelk, we look for the
spline minimizing the weighted error sum

E k = w� " k
� + w� " k

� +
X

d2f x;y g

X

m 2f s;t g

wd;m " k
d;m (17)

among all the possible splines meeting the previous con-
straints. The errors

" k
� = j� k

c � � k
t j (18)

" k
� = j� k

c � � k
t j (19)

are respectively the absolute differences between the mean and
the standard deviations of the color values of the corrected
source imageI c and the target imageI t computed inP for
channelk, and minimize the color distribution in the spirit of
Reinhard's method. The term

" k
d;m =

1
jPj

X

P

�
�
�
�
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@d

(x s) �
@Ikm
@d

(xm )

�
�
�
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in Eq. (17) improves structure similarity with the target image
while also preserving the image structure of the source image
I s, by explicitly taking into account the derivatives for each
channel k along the directiond. The error weightw� in
Eq. (17) was set experimentally to 0.5 while the other �ve
were set to 0.1 so that all weights add to unity. According
to our preliminary tests, variations up to 20% around these
values do not affect signi�cantly the �nal result.

Since �nding an analytical solution for minimizing the
error E k is not trivial, an exhaustive search for the two free
knots de�ning the spline is carried out. In the case of 8-bit
color channels, imposing only the monotone condition and
neglecting that different knot pairs can give rise to the same
spline color map, this would yield to an upper bound of
q = ( n (n � 1)=2)2 = n2(n � 1)2=4 different error values to
test, which forn = 256 amounts to about109, an unfeasible
number in practice. Nevertheless, both the time spent to
evaluate the errorE k on a given spline and the solution search
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Fig. 2. The checkerboard-like sampling grids (left) for the two knotsK 1 and
K 2 leading to the spline with minimum error for the correspondence setP .
Inside a neighborhoodR j (right, yellow squares) of the current regionR 0
(green square), already computed spline color mapsf i (red splines) for regions
R i (red squares) can be used to restrain the sampled search space (yellow
band) according to their meanf (purple spline) and standard deviation� f
in order to obtain the spline color mapf 0 for R 0 (green spline) minimizing
the error (best viewed in color and zoomed in).

space can dramatically be reduced by employing three suitable
heuristics, thus obtaining a near-optimal solution.

The �rst heuristic is motivated by the observation that, for
common images, the error on the mean color value" k

� is
dominant in Eq. (17), while the other errors just re�ne the
solution. Therefore, if the error" k

� for the current solution is
greater than" k

� + 15 for the best solution so far, the current
solution is discarded, thus avoiding the computation of the full
error E k and saving time.

The second heuristic can be derived by observing that
(1) some knot arrangements are unlikely to occur and (2)
perturbing the position of a knot changes only slightly the error
E k . In particular, for each knot, instead of a full range value
search, we can de�ne two uniform square grids in the range
of [0; 144] and [111; 255] respectively, with a step of 8 and a
checkerboard-like alternate grid sampling (see Fig. 2). Such
sampling scheme reduces the search space to approximately
3� 104 possible splines, i.e. by �ve orders of magnitude, while
still maintaining a near-optimal solution.

The last heuristic arises from the following observation: In
the case of PAs working locally (see Sec. III-B), for each
channel, spline color mapsf j = CP j of neighboring regions
R j must change smoothly, as they are related to region areas
with similar color properties. Hence, when computing the
color mapf 0 of the regionR 0, one can take advantage of the
already computed neighborhood color mapsf i , 1 � i � b (red
splines in Fig. 2). If at leastb � 3 such neighborhood regions
exist, then the search space of the two free knots off 0 (green
line) can be statistically constrained within a narrow region
(yellow band). Indeed, given a knot in the form(x; f 0(x)) ,
the errorE k is evaluated only if it holds

jf 0(x) � f (x)j � h (21)

for both knots de�ning the spline, with

h = min( a;4 � f (x ) ) (22)

Fig. 3. A representative splinef r (red) and some splines of its subsetVr
(blue), falling inside the band limited byt0 (green). Other representative
splines (purple) cannot fall completely inside thet1 band (yellow) (best
viewed in color and zoomed in).

where f (x) and � f (x ) are respectively the mean and stan-
dard deviation of the already computedf i (x) mapped values
(purple and yellow splines respectively), anda = 48 is used
to limit the standard deviation value. This heuristic, which
typically halves the search space, is used only in combination
with LCP and BLG (see Sec. III-B and Fig. 4) since other
PAs are either global or do not provide uniform neighborhood
regions.

Further speed-up improvements can be obtained with trivial
optimizations, including a pre-computation of the spline maps
for each knot pair and a parallel implementation of the code.

14) Fast Gradient Preserving Spline (FGPS):In order
to reduce even further the spline search space of GPS, a
coarse-to-�ne approach was designed. The spline search space
� = f f 1; f 2; : : :g is split into several subsetsVr , r > 0, each
induced by the representative splinef r 2 � through

Vr = f f 2 � : 8x jf r (x) � f (x)j � t0g (23)

for a given thresholdt0. In other words, the subsetVr contains
all the splines in the search space� that are inside a band of
width t0 aroundf r (see Fig. 3). A greedy strategy is adopted
to construct the setF = f f r g of representative splines.F ,
initially containing only the identity color map, is grown by
iterating on the whole search space� and including at each
iteration i the splinef i under evaluation only if

9 x 8f r 2 F : jf r (x) � f i (x)j > t 1 (24)

where t1 � t0, i.e. the current splinef i is included in F
only if f i does not fall completely inside a band of width
t1 for each representative splinef r already included inF
(see Fig. 3). By construction, the union of the subsetsVr

covers the whole search space, but it does not form a partition,
since non-empty intersections exist betweenVr subsets. For
each channelk, the errorE k is �rst evaluated on the setF
of representative splines, by choosing the best representative
splinef r ?

minimizing the errorE k . Then, only splines in the
subsetVr ? are evaluated. According to our experiments, setting
t0 = 16 andt1 = 12 gives a good compromise between speed
and correctness of the solution, leading to a further reduction
of the spline search space ranging from two to eight times.
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B. Color Map Probers And Aggregators (PAs)

1) Global (GL): This is the simplest PA. The color map
CP is applied to the whole source imageI s to obtain the
corrected output imageI c, whereP = f (I s(x); I t (x)) : x 2
I s \ I t g contains the color correspondences in the overlapping
area between the source and target imagesI s and I t .

2) Pitié's (P) [22]: Originally combined with HM, this PA
progressively transforms the source imageI s into the target
imageI t by projections onto random orthonormal basis sets,
i.e. by multiplying the color values by a rotation matrixR 2
R3� 3. This is aimed at decorrelating the signal in the RGB
space in order to support those MEs that operate channel-
wise. The input images in the new spaceI es and I et are then
passed to ME, whereP is computed as for GL but in the space
induced by the rotation matrixR. The corrected imageI ec is
back-projected into the original RGB space, thus obtaining
I c, that is used in the next iteration as the new estimate ofI s.
More speci�cally, the RGB vectorI i (x) for the pixelx in the
generic imageI i is projected as

Iei (x) = R I i (x) (25)

With the assumption that

I c(x) = I s(x) + � (26)

one obtains

I ec(x) = R I c(x) = R( I s(x) + � ) = I es(x) + R � (27)

so that� can be derived in the least square sense by solving
for all the consideredx

R� = I ec(x) � I es(x) (28)

3) Color In�uence Map (CIM) [13]: This PA was originally
combined with R. The source imageI s is partitioned inton
regionsR q by mean shift segmentation [28]. The setPq =
f (I s(x); I t (x)) : x 2 R qg of corresponding color values for
each regionR q is passed to ME, thus producingn color maps
CP q . The �nal output image is obtained as the weighted sum
of each color mapCP q . In particular, de�ning the CIM weight
w for the regionq on thel�� space as

w(x; q) = e� 3kI s (x ) � � R q k2
(29)

where � R q is the mean color value ofI s over R q, the �nal
imageI c is obtained as

I c(x) =
nX

q=1

w(x; q)CP q (I s(x))
P n

�q=1 w(x; �q)
(30)

Note that a similar approach using manually segmented re-
gions had already been proposed in [11].

4) Soft Tai's Segmentation (TS) [29]:Designed to work
in conjunction with R, this PA operates analogously to CIM.
However, weightsw are obtained directly with the soft color
segmentation algorithm exploiting Gaussian mixture models
described in [29].

Fig. 4. The whole areaI s [ I t is divided by a grid (green) into overlapping
image square regionsR b (blue square), with central cellR b (red square).
Color maps of neighboring cells (yellow squares) can be used to reduce the
search space and to speed up the minimization when GPS or FGPS are used,
see Sec. III-A13 (best viewed in color and zoomed in).

5) Mean Shift Segmentation (MSS) [21]:Paired in the
original paper with TG, this unit considers two distinct mean
shift segmentations ofI s. The �rst segmentation works on the
whole image, and producesna regionsR a ; the second one
works only on the overlapping areaI s \ I t and producesno

regionsR o. As with CIM, the no setsPo corresponding to
the regionsR o are given to ME, that outputs the color maps
CP o . Colors inside eachR o region are corrected accordingly.
Colors inside regionsR a that are outside the overlap area are
corrected according to the closest color mapCP k , where

k = argmin
o

k � R a � � R o k (31)

6) Linear Color Propagation (LCP):This is the �rst of
the two PAs specially designed for this work. This PA com-
pletes and re�nes the blending scheme of [1], applying color
correction into non overlapping image areas as the weighted
combination of propagated local color maps with a global
color map.

The bounding box ofI s [ I t is divided by ag1 � g2 grid
into overlapping64 � 64 pixel regions; the grid step is 32
pixels (see Fig. 4). We denote theb-th square region byR b

and its central32� 32 grid cell by R b. The local color maps
CP b are derived for eachR b in the overlapping area, where
Pb = f (I s(x); I t (x)) : x 2 R b; R b � I s \ I t g. In order
to improve method robustness especially in the case of bad
image registration,CP b is discarded if the averagerms error
betweenI c andI t in R b exceeds a threshold of 32. Surviving
local color maps are then propagated into the non-overlapping
area by smoothly mixing them with a global color map.

This global color map, referred to asCg, is obtained by
a weighted average of the local color maps with a channel-
wise monotone piecewise Hermite cubic spline. In detail,
indicating with superscriptk the k-th color channel, internal
knots (x; f k (x)) for the splinef k are such that

f k (x) =
1

jf I k
s (x )= x gj

X

b

X

x 2 R b ;
I k

s (x )= x

Ck
P b

(I s(x)) (32)

wherex 2 I s \ I t and j � j denotes the set cardinality. Note
that in the case of a zero denominator in Eq. (32), no knot is
de�ned for x.
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Color mapsCP b are propagated as illustrated in Fig. 5 and
discussed hereafter. The grid of Fig. 4 is employed to create
a g1 � g2 binary mask, with values 1 if the corresponding
grid cells include pixels fromI t , and 0 otherwise. Successive
expansions of the binary mask are then carried out using
the dilation morphology operator [30] with a square3 � 3
kernel, until the resulting area covered by 1's is three times
the initial area. At each dilation step, color mapsCP b for
the grid cellsR b corresponding to new 1's into the mask
are computed by interpolation. For this purpose, assuming
from Eq. 1 thatCP b = U � Mb � T with Mb 2 Rm 1 � m 2 , a
three-dimensional matrixM 2 Rg1 � g2 � (m 1 m 2 ) is created, by
stacking the matricesMb, according to the grid. That is, ifCP b

is de�ned,M b1 ;b2 ;m is them-th element ofMb, considered as
a column vector, withb1; b2 the grid indexes ofR b, otherwise
M b1 ;b2 ;m = 0 . Color map values corresponding to the grid
cells added at the current mask dilation step are obtained by
convolution of each two-dimensional slice of sizeg1 � g2

obtained fromM by iterating over indexm, with a 5 � 5 re-
weighted binomial kernel. The kernel is re-normalized after
setting to zero the weight values corresponding to zeros in the
binary mask.

Once the global and local color maps have been obtained,
they are combined to produce the color corrected image. A
weight z = ( �l � l )=�l is associated to each grid cell, wherel
is the dilation step at the time the cell was included into the
binary mask, and�l is the �nal number of dilations made (l
is set to zero for all the cells in the overlapping area). The
weight mapz as well as all slices ofM are resized32�
to the original image size through bicubic interpolation, thus
obtaining for each pixel locationx a weightz(x) and a color
mapCP x . Finally, the corrected source image is computed as

I c(x) = (1 � z(x)) Cg(I s(x)) + z(x) CP x (I s(x)) (33)

i.e. as the combination of the local propagated color maps
CP b and the global color mapCg, weighted according to the
distance fromI t . An example of the �nal outputI c can be
found in Fig. 6.

7) Best Local to Global (BLG):The second original PA
computes an interpolated color palette as in [2]. Grid-wise
color mapsCP b are obtained as for LCP and the best cell
index

d(x) = argmin
b

k CP b (I s(x)) � I t (x) k (34)

is associated to each pair of corresponding color values
(I s(x); I t (x)) in the overlapping area. Note thatd can differ
from the cell index the pixel belongs to.

The color palette is computed explicitly by quantizing the
RGB color space. In particular, each color channel is quantized
into q = 21 levels so thatq3 = 9261 quantized colors are
obtained. Color similarityp(ci ; x) between thei -th quantized
color ci and the RGB value of the pixel inI s is de�ned as

p(ci ; x) =

(
1 � kc i � I s (x )k

Q if k ci � I s(x) k� Q

0; otherwise
(35)

whereQ = 255
p

3=q is the maximal Euclidean distance be-
tween two quantized color neighbors in the three-dimensional

Fig. 5. The binary mask on the target imageI t (red boundaries) is expanded
sequentially through morphological dilation, and its intersection with the
source imageI s (blue boundaries) is used for propagating color maps and
computing the weight maskz (lighter red corresponds to later expansion steps
and lower weight values forz). Given the initialM (see text) including only
color maps for the intersection areaI s \ I t (yellow), at each dilation step
convolution is applied to eachM slice (dark green) to propagate color maps.
For each slice, only values present at the previous iteration (colors darker than
the kernel center on the right) are used. Kernel weights for slice values not
included at the previous dilation step are set to zero (white entries) and the
kernel is re-normalized (best viewed in color and zoomed in).

(a) (b)

Fig. 6. (a) The source input imageI s and (b) the �nal corrected imageI c
obtained by using the LCP unit in combination with the AM unit. Both images
are superimposed on the input target imageI t for a better understating (best
viewed in color and zoomed in).

RGB color space. The color mapCi associated to a quantized
color ci is the weighted sum of the best color mapsCP d ( x )

for pixels inside the overlapping area

Ci =
X

x 2 I s \ I t

p(ci ; x) CP d ( x )P
�x 2 I s \ I t

p(ci ; �x)
(36)

where linear combinations of color maps are intended in the
space induced by the transformationT of ME (see Eq. (1)),
i.e.

aCP x + b CP y = U � (aMx + bMy ) � T (37)

Finally, the color value of a pixelx , even not in the intersection
area of the input images is computed as

I c(x) = Cv (I s(x)) (38)

where

v = argmin
1� i � q3

k ci � I s(x) k (39)

is the index of the quantized color closest toI s(x).
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IV. EVALUATION

A. Experimental Setup

Following the recent literature on the subject [3], [4], [31],
[32], stitching can be regarded as an extension of image
mosaicing to the case where homography constraints are
relaxed and hold only locally, so that registered images are
just coarsely aligned.

For our evaluation, we relied mainly on the protocol de-
scribed in [6] (the most complete comparison of color correc-
tion methods for stitching to date, here signi�cantly extended),
which assumes no known color transform model, this being
the most general and realistic way to address the problem.
Indeed, most recent datasets avoid to refer to any particular
image acquisition conditions, i.e. operating setups (e.g. single
vs multiple cameras, �xed vs changing camera parameters),
due to the impossibility for the common user to have a
fully controlled environment and the right level of knowledge
and expertise. Nevertheless, we veri�ed experimentally that
the results of the best color correction methods are virtually
uncorrelated with the acquisition setup and therefore with the
associated color alteration (see Sec. IV-B).

The protocol of [6] was suitably modi�ed so as (a) to take
advantage from the improved image quality metrics published
later, and (b) to better handle coarsely registered images. We
used image pairs from three different existing datasets, plus a
novel dataset speci�cally designed to investigate the behavior
of the color correction methods under different acquisition
conditions. The �rst dataset [6] is subdivided into two classes
of 30 real and 40 synthetic scenes. The real scene images of
this dataset have been obtained from various sources, including
image frames from multi-view video applications, photos with
or without �ash lighting or under different capture modes, and
aerial image clips taken in the same place at different times.
In the case of synthetic scenes, a perfect image alignment
exists and color alterations have been obtained by software
editing. The second dataset [2] contains 15 already registered
image pairs mainly taken with different camera types and
setups, or undergoing palette recoloring. The third dataset [7]
is made up of 38 color image pairs, belonging to 6 real and
almost planar scenes, obtained by varying image exposure
only. The reader may refer to [2], [6], [7] for further details
about the transformations involved in the related datasets.
The novel dataset, explicitly created for this work, contains
127 image pairs taken from real image stitching application
scenarios. These image pairs are divided into four groups of
almost equal size, containing respectively image pairs obtained
with (1) distinct cameras (NVIDIA Shield Tablet, Huawei P8,
Huawei P9 light, SONY SLT-A37), (2) same camera (NVIDIA
Shield Tablet) with locked setup parameters or (3) varying
ISO, exposure and white balance, and (4) �xed parameters
but different environmental illumination conditions. For all
datasets, image pairs were registered through planar homo-
graphies according to the method described in [33] if the
registration was not already available. The overall set of 250
image pairs was manually split into two working datasets,
referred to asD1 andD2. Speci�cally, D1 contains 158 real-
istic stitching image pairs with relevant image misalignments

Fig. 7. Input images (top row) and the actual overlapping area used in tests
T1 andT2 . (best viewed in color).

or other color inconsistencies (e.g. a shadow is present in
the source image image but not in the target image), while
D2 contains the remaining images, mostly exhibiting a very
accurate geometric registration and arti�cial color alterations
(see the additional material). Notice thatD1 incorporates all
the 127 new image pairs from the four groups corresponding to
different acquisition conditions, respectively denoted asD1:1-4,
while D2 includes all the synthetic images from [6] and all
the repainting images from [2].

On each image pair, we performed two distinct tests in
which, given the input source and target imagesI s and I t ,
the corrected imageI c is output and evaluated accordingly. In
the �rst test, namedT1, we evaluated both the combinations
(I a ; I b) and (I b; I a) as input image pairs(I s; I t ) that can
be obtained by inverting the role between the source and
target images, according to a chosen image quality metric. In
particular, the recent iCID measure [8] and FSIMC index [9]
(i.e. the FSIM index extended to color images) were selected
as the closest to human judgment. These quality metrics work
better than simpler measures as PSNR [34] and SCIELAB [35]
and, in contrast to the SSIM index [36], can deal with
color images, which is an essential requirement in our case.
Additionally, in the second testT2, only the image pairs with
an overlap greater than 25% were selected, andI t was set to
50% of its overlapping area when computingI c (of course, the
whole I t is used for the comparison againstI c), thus gaining
a further insight into the sensitivity of the algorithms with
respect to input data size and outliers (see Fig. 7).

We ran all the possible ME/PA combinations, listed in Ta-
ble I, for a total ofM = 14 � 7 = 98 different color correction
algorithms. Matlab code, datasets and low-resolution output
images are freely available1. Implementations of P and TS
were derived respectively from [22] and [6]. Parameters for
the Edison mean shift implementation [28] used by CIM and
MSS were tuned on a dataset sample to get the best results.

Since, whatever the quality metric used, absolute errors may
vary dramatically from an image pair(I 1; I 2) to another, in
order to better appreciate the relative differences between the
different methodsA i under examination,i = 1 ; : : : ; M , we

1https://drive.google.com/open?id=0B3Nh0OK9BclQkt4empQVU5yVE0
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TABLE II
SOFT RANK ON DATASET D 1 , TEST T1 , BEST FIVE ME/PA PAIRS ARE IN BOLD, DARKER VALUES ARE BETTER(BEST VIEWED IN COLOR).

r g /FSIMC (%) r g /iCID (%) r t /FSIMC (%) r t /iCID (%)

GL LCP BLG CIM MSS TS P GL LCP BLG CIM MSS TS P GL LCP BLG CIM MSS TS P GL LCP BLG CIM MSS TS P

R 0.457 0.429 0.538 0.586 0.672 0.475 0.428g 0.745 0.620 0.583 0.976 0.835 0.693 0.660 0.546 0.384 0.300 0.671 0.653 0.522 0.500 0.875 0.514 0.359 1.174 0.868 0.766 0.748
CS 0.501 0.573 0.513 0.706 2.761 1.392 0.970 0.769 0.699 0.566 1.208 2.683 1.739 1.424 0.755 0.601 0.272 0.822 3.104 1.687 1.217 0.994 0.647 0.315 1.418 3.158 2.095 1.736
GC 0.719 0.697 0.506 0.648 0.722 1.117 1.182 0.830 0.714 0.580 0.901 0.783 1.239 1.335 0.846 0.709 0.317 0.710 0.758 1.281 1.370 1.181 0.754 0.427 1.075 0.920 1.618 1.782
3M 0.728 0.715 0.790 1.332 0.781 0.753 0.760 0.735 0.652 0.728 1.494 0.743 0.747 0.750 0.836 0.557 0.489 1.473 0.702 0.793 0.831 1.046 0.494 0.466 1.842 0.737 0.939 0.997
PM 0.612 1.333 0.789 1.819 0.777 0.693 0.694 0.647 0.920 0.691 1.961 0.687 0.683 0.683 0.485 1.072 0.441 1.846 0.495 0.496 0.509 0.482 0.519 0.326 2.084 0.355 0.455 0.466
AM 0.610 0.987 0.744 1.377 0.729 0.615 0.608 0.692 0.721 0.674 1.515 0.692 0.690 0.687 0.730 0.793 0.430 1.447 0.585 0.648 0.689 0.726 0.351 0.327 1.602 0.470 0.659 0.700
PR 2.101 1.437 0.693 2.529 2.300 4.015 4.064 2.056 1.529 0.658 2.609 2.236 3.734 3.899 2.520 1.410 0.405 3.000 2.833 4.720 4.767 2.485 1.571 0.378 3.182 2.772 4.379 4.580

HM 0.468 0.423h 0.618 0.598 0.659 0.566 0.554 0.663 0.538h 0.620 0.835 0.801 0.690 0.669 0.425 0.295 0.384 0.724 0.526 0.487 0.471 0.657 0.453 0.447 1.168 0.727 0.633 0.605
TG 0.575 0.734 0.748 1.362 0.739 3.950 4.871 0.656 0.571 0.657 1.427 0.686 2.513 2.978 0.560 0.465 0.453 1.354 0.657 4.394 5.520 0.602 0.175k 0.322 1.467 0.539 2.618 3.154

G 0.677 0.879 0.769 1.586 0.899 4.433 5.377 0.698 0.629 0.666 1.585 0.748 2.763 3.248 0.681 0.621 0.472 1.617 0.830 4.948 6.116 0.635 0.219l 0.329 1.664 0.587 2.883 3.452
MS 0.618 0.557 0.630 0.701 0.686 0.686 0.695 0.711 0.495j 0.594 0.877 0.678 0.708 0.712 0.567 0.336 0.361 0.695 0.525 0.572 0.580 0.670 0.163j 0.307 0.944 0.487 0.535 0.532

3MS 0.665 0.592 0.726 0.952 0.743 0.703 0.710 0.742 0.514i 0.663 1.172 0.691 0.704 0.715 0.559 0.304 0.420 0.935 0.518 0.553 0.565 0.609 0.103i 0.335 1.249 0.414 0.492 0.506
GPS 0.466 0.303f 0.483 0.472 0.559 0.510 0.497 0.767 0.487f 0.546 0.796 0.788 0.776 0.774 0.488 0.222f 0.254d 0.562 0.512 0.524 0.519 0.840 0.358 0.324 1.014 0.776 0.844 0.856

FGPS 0.528 0.315e 0.506 0.515 0.583 0.578 0.598 0.865 0.498e 0.551 0.874 0.849 0.877 0.889 0.554 0.232e 0.268c 0.625 0.534 0.605 0.637 0.948 0.374 0.320 1.142 0.835 0.947 0.979

TABLE III
SOFT RANK ON DATASET D 2 , TEST T1 , BEST FIVE ME/PA PAIRS ARE IN BOLD, DARKER VALUES ARE BETTER(BEST VIEWED IN COLOR).

r g /FSIMC (%) r g /iCID (%) r t /FSIMC (%) r t /iCID (%)

GL LCP BLG CIM MSS TS P GL LCP BLG CIM MSS TS P GL LCP BLG CIM MSS TS P GL LCP BLG CIM MSS TS P

R 0.989 0.629 0.397e 0.706 0.872 0.736 1.011 1.108 0.781 0.482 0.967 0.906 0.799 0.961 0.967 0.507 0.151 0.635 0.783 0.652 0.932 1.178 0.619 0.187 0.906 0.768 0.674 0.944
CS 0.638 1.248 0.522 0.617 0.829 7.646 1.665 0.784 1.090 0.578 1.014 0.908 6.079 2.616 0.838 1.421 0.310 0.654 0.857 9.294 2.096 0.822 1.112 0.288 0.960 0.773 7.979 3.329
GC 1.307 1.310 0.560 1.040 1.486 1.176 2.265 1.204 1.104 0.593 1.118 1.161 1.043 2.455 1.518 1.445 0.398 1.136 1.675 1.328 2.677 1.776 1.341 0.425 1.386 1.383 1.266 3.408
3M 1.270 0.933 0.630 1.027 1.144 1.023 1.324 1.004 0.761 0.606 0.982 0.871 0.827 1.064 1.520 0.963 0.471 1.135 1.199 1.098 1.536 1.536 0.857 0.404 1.270 0.955 0.945 1.500
PM 0.398f 0.832 0.423 0.519 0.413 0.399j 0.434 0.494 0.735 0.502 0.688 0.465h 0.472j 0.502 0.237 0.702 0.135 0.349 0.121h 0.160 0.229 0.222 0.531 0.160 0.510 0.064h 0.147j 0.201
AM 0.497 0.645 0.379c 0.435 0.453 0.443 0.500 0.560 0.580 0.472c 0.662 0.498 0.520 0.553 0.628 0.647 0.126c 0.387 0.356 0.341 0.564 0.526 0.404 0.144c 0.484 0.235 0.296 0.475
PR 2.062 1.642 0.425 1.996 3.546 5.387 9.791 2.150 1.686 0.502 2.447 2.674 4.317 8.922 2.342 2.030 0.185 2.395 4.350 7.168 12.26 2.619 2.066 0.218 3.013 3.249 5.935 11.95

HM 0.464 0.547 0.636 0.595 0.494 0.472 0.634 0.591 0.561 0.640 0.652 0.578 0.584 0.641 0.237 0.377 0.411 0.521 0.193 0.236 0.405 0.368 0.382 0.445 0.720 0.249 0.334 0.387
TG 0.408 0.475 0.471 0.737 0.448 0.437 2.219 0.505 0.496 0.515 0.854 0.485 0.513 1.556 0.170 0.259 0.201 0.602 0.119i 0.193 2.242 0.266 0.210 0.205 0.738 0.119i 0.264 1.525

G 0.412 0.490 0.478 0.768 0.460 0.446 2.382 0.504 0.501 0.520 0.887 0.485 0.514 1.639 0.179 0.280 0.212 0.641 0.134g 0.207 2.420 0.266 0.220 0.215 0.786 0.119g 0.267 1.620
MS 0.709 0.572 0.513 0.596 0.650 0.637 0.607 0.747 0.595 0.545 0.695 0.657 0.673 0.618 0.633 0.447 0.283 0.508 0.457 0.511 0.409 0.656 0.411 0.271 0.648 0.404 0.513 0.357

3MS 0.690 0.529 0.478 0.581 0.612 0.592 0.573 0.725 0.540 0.519 0.681 0.621 0.602 0.596 0.568 0.363 0.225 0.442 0.347 0.420 0.350 0.514 0.269 0.198 0.526 0.254 0.335 0.310
GPS 0.824 0.513 0.399d 0.614 0.742 0.623 0.929 1.088 0.594 0.478d 0.843 0.846 0.748 1.037 0.853 0.444 0.153 0.598 0.650 0.548 0.937 1.133 0.451 0.185 0.927 0.697 0.630 1.020

FGPS 1.010 0.632 0.403 0.888 1.039 0.817 1.137 1.380 0.685 0.479 1.099 1.181 0.974 1.267 1.045 0.593 0.153 0.934 1.026 0.794 1.162 1.524 0.608 0.185 1.384 1.177 0.951 1.308

de�ne and use thesoft rank

r (A i ; I 1 ; I 2) =
j" (A i ; I 1 ; I 2) � b(I 1 ; I 2) + � j

P M
j =1 j" (A j ; I 1 ; I 2) � b(I 1 ; I 2) + � j

(40)

where "(A i ; I 1; I 2) is the error, in terms of either iCID or
FSIMC in the overlapping areaI 1\ I 2, obtained when the color
correction methodA i is used with the image pair(I 1; I 2), �
is a small constant value avoiding a zero denominator, and

b(I 1; I 2) = min
j =1 ;:::; M

" (A j ; I 1; I 2) (41)

is the best value among all methods for the image pair(I 1; I 2)
in the case of the iCID metric. When FSIMC is employed,
the min function in Eq. (41) must be replaced by themax
function, since FSIMC is a similarity measure. The soft rank
r (A i ; I 1; I 2) ranges in[0; 1], since

MX

i =1

r (A i ; I 1; I 2) = 1 (42)

and achieves lower values for better methods. Notice that the
soft rank of Eq. (40) is proportional (by the constantM ) to
the error� i = j" (A i ; I 1; I 2) � b(I 1; I 2) + � j normalized with
respect to its average� �

r (A i ; I 1; I 2) /
� i

� �
(43)

This is more robust and stable than normalizing by the
maximum error (e.g. removing the worst method does not
change signi�cantly the rank). Notice also from Eq. (42) that
the average soft rank value is1M = 1

98 � 1%.
A quantitative and exhaustive evaluation of all the possible

ME/PA combinations requires a careful selection of the eval-
uation protocol to avoid results in contrast with the common

human perception. In order to evaluate a given methodA i , we
compare, as it is usual in the literature [6], the corrected and
target images, i.e.

r t = r (A i ; I c; I t ) (44)

Nevertheless, since in the real case of mosaicing and more
general stitching applications we are dealing with coarsely
registered input images, such straightforward comparison, re-
quiring an almost perfect registration, may lead to erroneous
evaluations whatever the image quality measure used [37]. For
instance, if an object moves between the two input imagesI s

and I t , a color correction method that simply copiesI t pixel
data intoI s to get the corrected imageI c would achieve the
best score withr t , notwithstanding the fact that the object in
the corrected image is in the wrong location. This is due to
the fact that Eq. (44) ignores altogether the structural content
of the source imageI s for the sake of comparison. Therefore,
to avoid erroneous comparative results especially in the case
of images from datasetD1, composed of real scene data, the
methods were tested not only withr t , but also with the average
between the results of the comparison ofI c with both the input
imagesI s and I t , i.e.

r g = r t + r s
2 (45)

where
r s = r (A i ; I c; I s) (46)

B. Results

Tables II-III show the soft ranksr g and r t (expressed as
percentages, the average error being about 1%, see Sec. IV-A)
for test T1 with both FSIMC and iCID, on datasetsD1 and



DRAFT 10

(a) I s (b) I t (c) I c - FGPS/BLG (d) I c - GPS/BLG

(e) I c - FGPS/LCP (f) I c - GPS/LCP (g) I c - R/P (h) I c - HM/LCP

(i) I c - 3MS/LCP (j) I c - MS/LCP (k) I c - TG/LCP (l) I c - G/LCP

Fig. 8. Results on an example image pair (a-b) for the �rst four top ranked ME/PA pairs (c-l) on datasetD 1 , testT1 , according tor t and r g for FSIMC
and iCID. I s and I c are superimposed onI t for a better understanding (best viewed in color and zoomed in).

D2, respectively. Each table entry corresponds to a different
ME/PA pair under test. The �ve best results obtained for each
soft rank are shown in bold. Subscripts in Table II(III) refer
to the associated result examples of Fig. 8(9).

According to Table II, GPS/LCP and its faster counterpart
FGPS/LCP (both assembled with new CUs proposed in this
work), followed by HM/LCP, are the only methods that rank
among the best top �ve inr g with both iCID and FSIMC .
Figure 8 shows color correction results obtained by the four
best ME/PA pairs of Table II on an example image pair of
datasetD1. Visual inspection of Figs. 8(c-l) con�rms that
these three methods provide the least number of artifacts and
the most natural color of all. Therefore, numerical results
are in good accordance with human judgment. However, the
top �ve ranked ME/PA pairs withr t /FSIMC are completely
different from those obtained withr t /iCID. There is no method
that performs clearly better than the others onD1 images
with both error metrics. This corroborates our observation of
Subsec. IV-A that, in the presence of image misalignments, the
soft rankr t may not be appropriate for comparing color cor-
rection results, nor be in agreement with perceptual evidence.
Nevertheless, notice that both GPS/LCP and FGPS/LCP are
also top-ranked forr t /FSIMC .

On the other hand, results with both soft ranksr t andr g on
datasetD2, containing image pairs with accurate geometric
registration and arti�cial color alterations, are more similar
and consistent (see Table III). In particular, the AM/BLG pair
(BLG being one of the new PAs proposed in this paper)
achieves the top ranked results with all four combinations

of soft ranks and quality metrics. Additionally, GPS/BLG
and PM/TS are among the top ranked pairs withr g and
both quality metrics, the latter being also top-ranked for
r t /iCID. Finally, PM/MSS, TG/MSS and G/MSS are among
the �ve top ranked pairs withr t and both quality metrics
(note that PM/MSS is composed of CUs never considered
together before). From the visual example of Fig. 9, it is worth
noting that, unlike theD1 dataset case, there are no strongly
noticeable perceptual differences among the best performing
methods for theD2 dataset, so that any of the above methods
would give visually similar results.

The contrasting conclusions drawn out from theD1 andD2

datasets are compatible with the different input data employed
in the datasets. In particular, images fromD1 from realistic
scenarios contain more wrong color correspondences and have
less content overlap to reconstruct the whole color mapping
function. For this kind of images, working (as done e.g. in
the GPS/LCP method) on robust characteristics, such as the
average color values and image gradient, yields the most
satisfactory results. This said, it is not true, as one may
hypothesize, that approaches with fewer parameters are most
robust and therefore should do better than others. Actually,
despite of their apparently simple model formulation, GPS
and FGPS (the best MEs forD1) have more implicit hidden
parameters than others. As a matter of fact, error minimization
with these methods is so complex that we gave up �nding an
analytical, yet approximate, solution, and decided to perform
a brute force space search. On the other hand, when color
correspondences are more complete and correct, and color
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(a) I s (b) I t (c) I c - AM/BLG (d) I c - GPS/BLG (e) I c - R/BLG

(f) I c - PM/GL (g) I c - G/MSS (h) I c - PM/MSS (i) I c - TG/MSS (j) I c - PM/TS

Fig. 9. Results on an example image pair (a-b) for the �rst four top ranked ME/PA pairs (c-j) on datasetD 2 , testT2 , according tor t and r g for FSIMC
and iCID. I s and I c are superimposed onI t for a better understanding (best viewed in color and zoomed in).

TABLE IV
TOP FIVE ME/PA PAIRS FOR SOFT RANKr g ON EACH TEST AND DATASET, BOLD ENTRIES INDICATE COMBINATIONS OF NEWCUS ONLY.

r g /FSIMC r g /iCID

1st % 2nd % 3rd % 4th % 5th % 1st % 2nd % 3rd % 4th % 5th %

D 1 GPS/LCP 0.303 FGPS/LCP 0.315 HM/LCP 0.423 R/P 0.428 R/LCP 0.429 GPS/LCP 0.487 FGPS/LCP 0.498 MS/LCP 0.495 3MS/LCP 0.514 HM/LCP 0.538
D 2 AM/BLG 0.380 PM/GL 0.398 R/BLG 0.398 GPS/BLG 0.399 PM/TS 0.400 PM/MSS 0.463 PM/TS 0.470 AM/BLG 0.471 GPS/BLG 0.476 FGPS/BLG 0.477

D 1:1 GPS/LCP 0.255 FGPS/LCP 0.271 CS/GL 0.315 HM/GL 0.334 HM/LCP 0.335 GPS/LCP 0.533 GPS/BLG 0.540 FGPS/LCP 0.540 FGPS/BLG 0.552 MS/LCP 0.569
D 1:2 HM/LCP 0.122 GPS/LCP 0.131 FGPS/LCP 0.155 R/TS 0.158 R/P 0.158 HM/LCP 0.216 GPS/LCP 0.222 GC/LCP 0.234 FGPS/LCP 0.254 R/LCP 0.255
D 1:3 FGPS/LCP 0.411 GPS/LCP 0.413 FGPS/BLG 0.446 GPS/BLG 0.451 CS/BLG 0.474 TG/LCP 0.558 FGPS/BLG 0.562 GPS/BLG 0.567 3MS/LCP 0.578 CS/BLG 0.588

T1

D 1:4 GPS/LCP 0.342 FGPS/LCP 0.342 3MS/LCP 0.449 MS/LCP 0.451 R/LCP 0.458 MS/LCP 0.449 3MS/LCP 0.456 GPS/LCP 0.497 FGPS/LCP 0.502 TG/LCP 0.532

D 1 GPS/LCP 0.319 FGPS/LCP 0.333 R/P 0.385 R/GL 0.412 GPS/GL 0.417 GPS/LCP 0.498 FGPS/LCP 0.516 GPS/BLG 0.523 MS/LCP 0.532 GC/BLG 0.538
D 2 AM/BLG 0.385 PM/TS 0.390 PM/GL 0.394 R/BLG 0.407 GPS/BLG 0.408 PM/TS 0.457 AM/BLG 0.469 GPS/BLG 0.473 FGPS/BLG 0.476 PM/BLG 0.476

D 1:1 GPS/LCP 0.256 FGPS/LCP 0.274 HM/GL 0.322 GPS/TS 0.323 GPS/P 0.323 GPS/BLG 0.515 GPS/LCP 0.519 FGPS/LCP 0.536 GC/BLG 0.537 FGPS/BLG 0.543
D 1:2 GC/GL 0.077 R/TS 0.093 R/P 0.093 GC/CIM 0.099 R/GC 0.106 3M/GL 0.125 GC/GL 0.127 3M/TS 0.139 3M/P 0.139 GC/MSS 0.154
D 1:3 GPS/LCP 0.391 FGPS/LCP 0.395 GPS/BLG 0.456 HM/GL 0.461 FGPS/BLG 0.472 GPS/BLG 0.558 TG/LCP 0.565 FGPS/BLG 0.569 GPS/LCP 0.581 FGPS/LCP 0.591

T2

D 1:4 GPS/LCP 0.411 FGPS/LCP 0.412 GPS/GL 0.458 R/GL 0.471 CS/GL 0.491 MS/LCP 0.564 GPS/LCP 0.572 3MS/LCP 0.573 GPS/BLG 0.578 FGPS/LCP 0.584

TABLE V
TOP FIVE ME/PA PAIRS FOR SOFT RANKr t ON EACH TEST AND DATASET, BOLD ENTRIES INDICATE COMBINATIONS OF NEWCUS ONLY.

r t /FSIMC r t /iCID

1st % 2nd % 3rd % 4th % 5th % 1st % 2nd % 3rd % 4th % 5th %

D 1 GPS/LCP 0.222 FGPS/LCP 0.232 GPS/BLG 0.254 FGPS/BLG 0.268 CS/BLG 0.272 3MS/LCP 0.103 MS/LCP 0.163 TG/LCP 0.175 G/LCP 0.219 MS/BLG 0.307
D 2 TG/MSS 0.119 PM/MSS 0.121 AM/BLG 0.126 G/MSS 0.134 PM/BLG 0.135 PM/MSS 0.064 TG/MSS 0.119 G/MSS 0.119 AM/BLG 0.144 PM/TS 0.147

D 1:1 GPS/LCP 0.208 FGPS/LCP 0.214 HM/LCP 0.238 GPS/BLG 0.264 CS/BLG 0.282 3MS/LCP 0.118 TG/LCP 0.138 MS/LCP 0.153 G/LCP 0.172 AM/LCP 0.329
D 1:2 HM/LCP 0.056 GPS/LCP 0.126 FGPS/LCP 0.139 R/LCP 0.161 MS/LCP 0.198 3MS/LCP 0.049 MS/LCP 0.050 AM/LCP 0.161 3M/LCP 0.164 HM/LCP 0.179
D 1:3 GPS/BLG 0.144 FGPS/BLG 0.149 CS/BLG 0.180 3MS/LCP 0.189 GPS/LCP 0.194 3MS/LCP 0.117 TG/LCP 0.124 G/LCP 0.178 CS/BLG 0.198 FGPS/BLG 0.200

T1

D 1:4 3MS/LCP 0.118 MS/LCP 0.187 GPS/LCP 0.260 FGPS/LCP 0.264 TG/LCP 0.283 3MS/LCP 0.043 MS/LCP 0.081 TG/LCP 0.111 G/LCP 0.135 GPS/LCP 0.289

D 1 GPS/LCP 0.210 FGPS/LCP 0.223 GPS/BLG 0.273 HM/LCP 0.287 FGPS/BLG 0.305 3MS/LCP 0.225 MS/LCP 0.252 GPS/BLG 0.274 TG/LCP 0.283 MS/BLG 0.292
D 2 PM/BLG 0.127 PM/TS 0.136 AM/BLG 0.139 R/BLG 0.161 GPS/BLG 0.167 PM/TS 0.104 PM/BLG 0.113 AM/BLG 0.129 GPS/BLG 0.168 FGPS/BLG 0.173

D 1:1 GPS/LCP 0.191 FGPS/LCP 0.201 HM/LCP 0.227 HM/GL 0.262 GC/BLG 0.266 3MS/LCP 0.222 MS/LCP 0.233 TG/LCP 0.282 MS/BLG 0.305 G/LCP 0.315
D 1:2 HM/LCP 0.070 GPS/LCP 0.123 GC/GL 0.133 GC/CIM 0.136 HM/GL 0.136 MS/LCP 0.127 HM/LCP 0.135 GC/BLG 0.146 3M/GL 0.156 3MS/GL 0.157
D 1:3 GPS/LCP 0.145 HM/GL 0.152 FGPS/LCP 0.158 GPS/BLG 0.159 3MS/LCP 0.183 TG/LCP 0.176 GPS/BLG 0.182 3MS/LCP 0.185 FGPS/BLG 0.207 G/LCP 0.236

T2

D 1:4 GPS/LCP 0.290 3MS/LCP 0.295 FGPS/LCP 0.305 MS/LCP 0.306 TG/LCP 0.359 3MS/LCP 0.244 MS/LCP 0.255 TG/LCP 0.280 GPS/BLG 0.289 FGPS/BLG 0.303

alteration less realistic, such as with theD2 input images,
CUs that “over�t” the data (e.g. the AM and PM MEs and
the BLG and MSS PAs) achieve the best accuracy. Notice also
that segmentation-based PAs such as MSS and TS are unlikely
to give good results inD1, especially in the non-overlapping
area, yet are expected to do quite well inD2. Similar ranking
considerations hold in the case of testT2 (more detailed results
are reported as additional material), but clearly the quality of
the �nal corrected image is lower, as less data correspondences
are available as input for the algorithms.

An additional observation must be made about MEs working
channel-wise (i.e. GC, HM, TG, G, GPS, FGPS and MS)
in the presence of some limited, application-speci�c color
transformations, such as those employed for palette recoloring
(see Fig. 10). These MEs, when combined with PAs based on

linear combinations (e.g. GL and LCP), are mostly unable to
handle intra-channel color transformations such as those from
red to green. This does not hold for non-linear PAs (e.g. BLG
and MSS).

Concerning image pairs from realistic image stitching sce-
narios, we further evaluated the color correction methods
according to datasetsD1:1-4 given by splitting the novel 127
image pairs created from this work, representing four main
sources of color alterations (see Subsec. IV-A). Tables IV-V
report the top �ve soft ranks ME/PA pairs for each evaluated
test and dataset (detailed results can be found in the additional
material). According to the previous observations, we focus
our attention only on soft rankr g due to the nature of
considered images. Results show that forD1:1, containing
input images from distinct cameras, GPS/LCP and FGPS/LCP
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(a) I s (b) I t

(c) I c - AM/BLG (d) I c - AM/LCP

(e) I c - GPS/BLG (f) I c - GPS/LCP

(g) I c - TG/BLG (h) I c - TG/LCP

Fig. 10. Example of different outputs for intra-channel color transformations
(best viewed in color and zoomed in).

are still the best methods. In the caseD1:2 of stitching images
from the same camera with a locked setup, the same results as
for the whole datasetD1 hold for testT1, while GC/GL is the
best method for testT2. This is not surprising, as in testT2 the
number of color correspondence outliers is really high due to
the low image overlap, and in the case of a single camera and
a locked setup the true color transformation is close to the
identity map. Therefore, GC/GL, which we found generally
to alter the original colors ofI s less than other methods,
performs best. On the other hand, forD1:3, where images
come from the same camera but with varying ISO, exposure
and white balance, GPS/BLG and FGPS/BLG do better than
GPS/LCP and FGPS/LCP, which nevertheless are still among
the best top-ranked methods. This is probably due to some
recoloring effects caused by the white balance adjustment,
which alters intra-channel color relations as discussed above.
Finally, for D1:4, having images from a �xed camera and
varying environmental illumination, GPS/LCP and FGPS/LCP
are still the best methods, followed by 3MS/LCP and MS/LCP.

To summarize, referring again to Tables IV-V, GPS and
FGPS are the best MEs in the case of real stitching input
images, either paired with LCP (bold black entries) or, in
the case of intra-channel transformation, with BLG (bold red
entries). Moreover, LCP and BLG are generally the best PAs
for other MEs. For what concerns real stitching applications,
we can conclude that there is no evidence that a given source
of color distortion noticeably affects the output of the best
color correction methods. Conversely, in the case of arti�cial

TABLE VI
SPEARMAN RANK -ORDER CORRELATION COEFFICIENT (%) FOR

DIFFERENT SOFT RANKS AND IMAGE QUALITY METRICS.

FSIMC iCID

r g r t r s r g r t r s

F
S

IM
C r g 100 81 90 65 43 82

r t 81 100 53 84 78 50
r s 90 53 100 42 14 90

iC
ID

r g 65 84 42 100 88 51
r t 43 78 14 88 100 21
r s 82 50 90 51 21 100

(a) D 1

FSIMC iCID

r g r t r s r g r t r s

F
S

IM
C r g 100 97 89 96 94 57

r t 97 100 77 95 97 47
r s 89 77 100 80 74 65

iC
ID

r g 96 95 80 100 98 61
r t 94 97 74 98 100 48
r s 57 47 65 61 48 100

(b) D 2

color alterations and �ner image registration, BLG and MSS
are the best PAs, combined with PM followed by AM, TG, G
and GPS.

C. More about soft ranks and quality metrics

Table VI reports the Spearman rank-order correlation coef�-
cient (SROCC) [38] between soft ranksr t , r s andr g, obtained
by comparing the corrected imageI c respectively against the
target I t , the sourceI s or both input images. Both FSIMC
and iCID on theD1 and D2 datasets (see Subsec. IV-A) are
considered. SROCC is often used for the analysis of image
quality metrics [8], [9], [36], [39].

In the case of iCID vs iCID (bottom right block matrices),
r g is strongly correlated withr t , less with r s, on both D1

and D2. Similarly, r t and r s are strongly uncorrelated. This
implies thatr g is unlikely to be minimum whenI c is half way
betweenI t and I s for iCID. Note also that ranks onD2 are
more correlated to each other than ranks onD1, as accurate
image alignment implies anyway a higher structural similarity
inside image pairs.

In the case of FSIMC vs FSIMC (top left block matrices),
r t andr s have a good correlation onD2 but not onD1, while
r g has a strong correlation with bothr t andr s. This is likely
due to the fact that, differently to iCID, FSIMC relies more on
image structural content than on color intensities, as geometric
transformations become stronger.

Further evidence of this behavior can be observed by
inspecting SROCC for FSIMC vs iCID (top right and bottom
left block matrices). OnD1 (see Table VI(a)),r g/iCID is not
strongly correlated withr g/FSIMC , and is more correlated
with r t /FSIMC than with r s/FSIMC . The opposite happens
for r g/FSIMC , which is less correlated withr t /iCID than with
r s/iCID. This does not happen onD2 (see Table VI(b)), where
in any caser g is more correlated withr t than withr s, thanks
to the accurate geometric registration of the images.

To summarize, for accurately registered images,r g gives
similar results whatever the error quality metric used (FSIMC

or iCID), and is more in accordance withr t than with r s, as
quality metrics are designed to privilege more color content
than structural context. On the other hand, for coarsely reg-
istered images,r g/FSIMC tends to emphasize someway more
thanr g/iCID the structural context ofI s (taken into account by
r s), than the color content ofI t (taken into account byr t ). As
a result, special care should be taken when using Table II to
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TABLE VII
AVERAGE RUNNING TIME (S), DARKER VALUES ARE BETTER(BEST

VIEWED IN COLOR).

GL LCP BLG CIM MSS TS P

R 0.38 2.41 18.44 9.56 12.84 334.08 9.04
CS 1.02 2.11 5.51 7.94 11.63 336.18 4.04
GC 1.13 1.87 5.13 7.58 11.27 335.18 3.82
3M 1.05 2.11 5.40 7.67 11.65 337.18 4.37
PM 1.14 2.40 5.97 7.88 11.64 336.70 5.63
AM 1.21 2.09 5.51 7.83 11.63 337.03 4.66
PR 1.26 2.92 19.40 9.48 13.17 334.54 11.60

HM 1.47 11.77 9.20 8.10 11.87 334.41 19.83
TG 9.16 107.99 101.92 59.28 26.42 343.08 297.52

G 1.46 15.08 12.28 9.89 12.13 320.46 24.80
MS 1.62 16.43 13.83 10.29 13.36 336.06 29.95

3MS 1.73 16.66 14.81 10.51 13.48 322.88 31.04
GPS 42.76 50.62 47.75 685.12 501.15 446.37 2318.54

FGPS 13.55 31.43 28.70 192.05 134.81 368.25 763.54

select a good color correction method for coarsely registered
images. To be sure that the chosen method works reasonably
well, it should have a high rank with bothr g/FSIMC and
r g/iCID, and not with only one of them. Following this
observation, we can conclude that, as already emerged from
the analysis of Table II, both GPS/LCP and FGPS/LCP are
ideal candidates for color correction with coarsely registered
images, as they rank among the �rst withr g whatever the
quality metric, and are also visually in accordance with human
judgment.

D. Running Time

Table VII shows the average running time for input images
of about800� 600 pixels. Times refer to our 6 core multi-
threaded Matlab implementation on a Intel i7 at 4GHz.

Concerning the running time for PAs, GL is obviously the
fastest with any ME, followed by LCP and BLG, both working
block-wise on the images. CIM and MSS, which are based
on mean shift segmentation, come next, followed by P, when
combined with all but GPS, FGPS and TG. The worst running
times are obtained with TS whichever ME, and by P when
combined with either GPS, FGPS and TG.

An insight into the time performance of MEs is given by
the GL column of Table VII, dealing with the simplest PA.
Data show that almost all MEs run in less than 2 seconds,
except for GPS, FGPS and TG, whose running times are still
reasonable. In addition, both GPS and FGPS, when coupled
with LCP and BLG, that provide the most promising visual
results (see Subsec. IV-B), are still conveniently usable with
respect to GL. Notice also that FGPS provides a remarkable
running time improvement over GPS, with a speedup of about
4� .

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we introduced a new compositional framework
for classifying color correction methods in terms of ME/PA
pairs. This framework is completely general and comprehen-
sive, and allows for a clearer analysis of color correction
methods, providing a deeper insight into their properties.

We revisited and categorized 15 of the existing color cor-
rection methods according to this framework, identifying and
combining pairwise their MEs and PAs to design new methods
never considered before. We also designed four novel CUs (2

MEs and 2 PAs), that were found to be the building material
for the best performing algorithms.

In order to evaluate all possible 98 color correction methods
that arise from the proposed framework, image pairs from
several distinct datasets were used. Differently from previous
evaluations, our tests focused on performance evaluation in the
presence of image misalignments, bearing in mind real world
applications such as image mosaicing and stitching. To the best
of our knowledge, this is the �rst evaluation on so big a dataset,
explicitly takes into account coarse image registration issues,
and is also the �rst to employ the latest state-of-the-art image
quality metrics, known to be the closest to human judgment.
According to our comparative evaluations, the GPS/LCP and
FGPS/LCP methods, built upon our proposed CUs, achieved
the top ranking and obtained the most robust results in the
case of real stitching scenarios. In the presence of accurate
image registration and arti�cial color alterations, AM/BLG,
whose PA was also proposed in this paper, obtained the most
accurate results, followed by PM/MSS, which is an original
combination of existing CUs.

Our compositional framework is quite general. Therefore,
we plan as future work to add further CUs from existing
color correction methods which were not considered in this
paper. We also plan to extend the datasets and the quality
assessment metrics employed, for instance by applying on
accurate registered images known geometric transformations
to mimic a coarse image alignment, thus making the choice
of the ground-truth and of the error metrics more reliable.
Even more importantly, we think that an interesting direction
for future research is the investigation of computational chains
composed of more than one pair of ME and PA, which could
prove effective at overcoming the weaknesses of a given single
ME/PA pair.
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