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Abstract. We present an approach for camera calibration from the im-
age of at least two circles arranged in a coaxial way. Such a geometric
configuration arises in static scenes of objects with rotational symme-
try or in scenes including generic objects undergoing rotational motion
around a fixed axis. The approach is based on the automatic localization
of a surface of revolution (SOR) in the image, and its use as a cali-
bration artifact. The SOR can either be a real object in a static scene,
or a “virtual surface” obtained by frame superposition in a rotational
sequence. This provides a unified framework for calibration from single
images of SORs or from turntable sequences. Both the internal and ex-
ternal calibration parameters (square pixels model) are obtained from
two or more imaged cross sections of the SOR, whose apparent contour
is also exploited to obtain a better calibration accuracy. Experimental re-
sults show that this calibration approach is accurate enough for several
vision applications, encompassing 3D realistic model acquisition from
single images, and desktop 3D object scanning.

1 Introduction

Camera calibration is a fundamental problem in computer vision and photogram-
metry, whose solution allows relating 2D image coordinates to directions in the
3D space. The calibration methods proposed in the literature exhibit a trade-off
between geometric accuracy and flexibility of use. Very high accuracies are typ-
ically required for laboratory applications, and obtained with special purpose
3D calibration patterns [1]. On the other hand, results from projective geom-
etry were recently used to develop flexible and reasonably accurate calibration
approaches for desktop vision applications exploiting scene constraints. A popu-
lar scene-based calibration approach uses the vanishing points of three mutually
orthogonal directions [2], thus proving useful in the reconstruction of architec-
tural environments [3], [4]. Images of spheres were used for desktop calibration
purposes first in [5], and more recently in [6]; however, spherical calibration
approaches are typically not robust w.r.t. noisy image features. The desktop cal-
ibration approach proposed in [7] uses a planar (2D) checkerboard to achieve a
good trade-off between accuracy and flexibility. The same author proposed in
[8] an approach based on linear (1D) artifacts that can be used for simultaneous
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calibration of multiple cameras with a partially overlapping field of view. An-
other desktop approach appears in [9]: by exploiting the image of two arbitrary
coplanar circles, the focal length of the camera and its extrinsic parameters are
obtained.

(a) (b)

(c) (d)

Fig. 1. (a): A real SOR object. (b): Characteristic curves (apparent contour, imaged
cross sections) extracted from (a). (c): An object undergoing Single Axis Motion on a
turntable. (d): The virtual SOR induced by the rotating object in (c).

Being quite common in man-made environments, surfaces of revolution (SORs)
were also proposed for desktop internal calibration purposes [10] and single view
metric reconstruction [11], [12]. Thanks to their symmetry properties, SORs can
be conveniently used as multiple camera calibration artifacts. The SOR features
usable for calibration are the elliptical imaged cross-sections and the apparent
contour. In [10], the apparent contour alone is used to calibrate the camera; this
method requires that that two SORs are present in the same image, or that two
or more images of SORs taken from the same camera are available. In [12] it is
shown that the visible portions of two manually segmented imaged cross-sections
are enough for calibrating from one view the focal length and the principal point
provided that the camera has square pixels (a constraint always met by the
modern devices), even when a single SOR object is present in the image.
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In this paper, we present a desktop calibration approach based on the pres-
ence in the image of at least two coaxial circles. Such a geometric configuration
often arises in practical applications, either in static scenes of a rotationally-
symmetric object or in dynamic scenes of a generic object rotating on a turntable
(Single Axis Motion, SAM). A unified framework is provided for both cases, by
extracting a SOR object from image data, and using it as calibration artifact.
However, while in the former case the SOR is a real object (Fig. 1(a, b)), in
the latter case it is actually a “virtual surface,” whose image is obtained by
superposition of the difference between the current and the first frame of the se-
quence (Fig. 1(c, d)). As in [12], calibration of a square pixel camera is achieved
from a single SOR view. However, that calibration approach is extended here to
both internal and external parameters, and is completely automatic, thanks to
a homology-based curve segmentation strategy. In addition, our approach com-
bines both the calibration primitives exploited in [12] (imaged cross-sections)
and those used in [10] (apparent contour) so as to add robustness and accu-
racy to the calibration task. Besides, the approach offers a new solution to the
problem of camera calibration from turntable sequences, differing from previ-
ous solutions (see e.g. [13]) in that it doesn’t require point tracking and can
also deal with textureless objects. Experimental results provide a quantitative
evaluation of calibration performance and demonstrate the use of the approach
for the purpose of metric 3D reconstruction and texture acquisition in practical
applications.

2 Automatic SOR Segmentation

A SOR can be parameterized as

P(ϑ, t) = (ρ(t) cos(ϑ), ρ(t) sin(ϑ), t) , (1)

where ϑ ∈ [0, 2π] and t ∈ [0, 1]. The scaling function ρ(z) controls the 3D shape
of the SOR. The perspective projection of a SOR like the vase of Fig. 1(a) gives
rise to two different kinds of image curves, namely the apparent contour and
the imaged cross sections of Fig. 1(b). The former is the image of the points at
which the surface is smooth and the projection rays are tangent to the surface.
The shape of this curve is view dependent. On the other hand, imaged cross sec-
tions are view independent elliptical curves, which correspond to parallel coaxial
circles in 3D and arise from surface normal discontinuities or surface texture
content. Both the apparent contour and the imaged cross sections of a SOR are
transformed onto themselves by a 4-dof harmonic homology

H = I− 2
v∞ lTs
vT∞ ls

, (2)

where ls and v∞ are respectively the imaged axis of revolution and the vanishing
point of the normal direction of the plane through ls and the camera center [14].

The SOR segmentation problem concerns with automatically estimating from
a SOR image the harmonic homology of Eq. 2 together with the imaged SOR
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(a) (b) (c)

Fig. 2. Automatic SOR segmentation. (a): Homology estimation and curve segmenta-
tion. (b): Conic pencil-based curve classification. (c): The final result.

curves (apparent contour, visible imaged cross sections) consistent with it. All
of this geometric information will be exploited later to calibrate the camera.
The segmentation strategy follows closely the two-phase approach proposed in
[15]. The first phase is devoted to estimating the harmonic homology and all the
image curves (possibly including clutter) consistent with it. This is achieved by
solving an optimization problem involving edge points extracted from the image
according to a multiresolution scheme, where the RANSAC algorithm is used at
the lowest resolution level to provide a first guess of the homology parameters.
In Fig. 2(a) the final output of the first phase is shown.

The second phase is devoted to classifying the image curves obtained before
respectively into (a) apparent contour, (b) imaged cross sections and (c) clutter.
To this aim, the tangency condition between each imaged cross-section and the
silhouette is exploited, allowing us to construct a conic pencil for each silhou-
ette point pair (Fig. 2(b)), and to look, among all possible conic pencils, for
the two ellipses receiving the largest consensus in a Hough-like voting procedure
(Fig. 2(c)). Besides being of key importance for the purpose of SOR segmenta-
tion, the use of the apparent contour significantly improves the quality of the
homology estimate, and hence of the calibration parameters estimated from it.

Automatic segmentation of the imaged virtual SOR arising from SAM se-
quences follows the same lines as above, but is significantly easier thanks to the
fact that clutter is almost absent, and binary images (with the virtual SOR as
the foreground) are used, instead of color images.

3 Camera Calibration

3.1 Internal Parameters

The imaged SOR fixed entities are strictly related to the calibration matrix K,
which embeds information about the internal camera parameters. In particular
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it holds ls = ωv∞, where ω = K−TK−1 is referred to as the image of the absolute
conic (IAC) [16]. Moreover, since cross sections are parallel circles in 3D, they
intersect at the circular points of the families of planes orthogonal to the SOR
symmetry axis. Their projection in the image, i and j, are also related to the
image of the absolute conic as iT ω i = 0 and jT ω j = 0. The resulting system





iT ω i = 0
jT ω j = 0
ls = ωv∞

(3)

provides four linear constraints on ω, whose coefficients can be computed from
(the visible portions of) two imaged ellipses as shown in [12]. In that paper, it
is demonstrated that only three out of the four constraints above are actually
independent. Therefore, the system of Eq. 3 can be used to calibrate a square
pixel camera (zero skew and unit aspect ratio: 3 dofs) from a single image.

3.2 External Parameters

In [17], external orientation is obtained from the imaged cross sections of a right
straight homogeneous generalized cylinder (RSHGC) under orthographic view-
ing conditions. In the following we address the problem of external calibration
under full perspective viewing conditions from the image of two cross sections of
a SOR—this being a specialization of a RSHGC. Similarly to [18] and [9], our
solution is based on the image of two circles, but with the important difference
that in our case the circles are coaxial, and not coplanar. Our approach exploits
the knowledge of (1) the imaged SOR symmetry axis ls; (2) the vanishing line
l∞ = i× j common to all the planes orthogonal to the SOR symmetry axis, and
(3) one or more imaged cross sections. We recall that the matrix K represents
only the internal camera parameters; the complete projection matrix is

P = KR[I3×3 | − C],

where the 3-vector C is the camera center in (inhomogeneous) world coordinates,
and R is the rotation between the world frame and the camera frame. Without
loss of generality, we can take as world frame origin the center of the bottom
cross section of the SOR, and as z axis the SOR symmetry axis; furthermore,
we can impose that the camera center must lie on the half plane x > 0, y = 0.

Rotation Matrix. The first step is the computation of the rotation matrix

R =
[
nx ny nz

]
, (4)

where nx, ny, nz are unit vectors. It is well known that, given a point image p
in homogeneous coordinates, the inhomogeneous 3-vector K−1p represents the
direction (with respect to the camera frame) of the ray passing through the
camera center and p [16]. Therefore, if we choose any two points on the line ls,



6

we can determine two vectors lying on the plane y = 0, whose normalized cross
product provides us with the unit vector ny. (The sign of the cross product must
be consistent with the definition of the world frame orientation given above—see
also the example below.) The same procedure can be applied to compute the
unit vector nz from two points properly chosen on the vanishing line l∞. Finally,
the unit vector nx is computed as the cross product of ny and nz. Fig. 3 shows
three points which can be conveniently chosen for obtaining the rotation matrix.
These are:

– the homology vertex v∞ ∈ l∞, computed as shown in Section 2;
– the imaged center of the bottom cross section xc. This is the projection

of the world origin in the image, and can be obtained from the pole-polar
relationship between the imaged bottom cross-section (represented by the
3× 3 symmetric matrix Cb) and the vanishing line l∞ as xc = C−1

b l∞;
– the intersection xi = ls × l∞ between ls and l∞.

In Fig. 3, the imaged z axis (ls) is oriented from xc to xi. Since the x coordinate
of the camera center is positive, the vector

my = (K−1xc)× (K−1xi) = K>(xc × xi) (5)

must have the same direction as the y axis, in order to obtain a right-hand world
frame. The vector mz orthogonal to the plane z = 0 and directed as the z axis
must then be obtained as

mz = (K−1v∞)× (K−1xi) = K>(v∞ × xi) . (6)

The unit vectors ny and nz are finally obtained by normalization of my and mz,
respectively.
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Fig. 3. Lines and points needed for rotation matrix computation.

As the matrix R thus computed is seldom a rotation matrix, a final refinement
step based on the SVD decomposition is carried out to obtain the best orthogonal
approximation to R [7].
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Camera Center. The last step is that of the computation of camera center.
Although any visible cross section of known height z could be exploited, for the
sake of simplicity, in what follows we will use the bottom cross section (at z = 0),
the extension of the equations to the general case being straightforward. Let ρ be
the radius of the bottom cross-section, and consider again the projection matrix
P. Any point on the plane z = 0 is mapped onto the image by the homography
H0 given by:

x = P (x,y, 0, 1)> =

=
[
p1 p2 p4

]
(x,y, 1)> =

= H0 (x,y, 1)> ,

(7)

where pi is the i-th column of P. In particular, the center of the bottom cross
section is projected onto the inhomogeneous point with pixel coordinates (xc, yc),
whose corresponding homogeneous vector is

σxc = σ




xc

yc

1


 = H0




0
0
1


 = p4 . (8)

More generally, the homography H0 transforms any point of the bottom cross
section into the homogeneous image point

xϑ = H0




ρ cos ϑ
ρ sin ϑ

1


 = ρ cosϑ p1 + ρ sin ϑ p2 + σxc , (9)

with pixel coordinates (xϑ, yϑ) such that

yϑ

xϑ
=

ρ cos ϑ p21 + ρ sin ϑ p22 + σyc

ρ cos ϑ p11 + ρ sin ϑ p12 + σxc
, (10)

where pij denotes the (i, j) element of P. Solving Eq. 10 for σ, we obtain

σ =
(p21xϑ − p11yϑ) cos ϑ + (p22xϑ − p12yϑ) sin ϑ

yϑxc − xϑyc
ρ . (11)

Now, since by definition of the matrix P, the camera center C appears only
in the fourth column:

p4 = −KRC , (12)

by replacing Eq. 12 into Eq. 8 we finally obtain

C = (KR)−1(−σxc) = −σR>K−1xc . (13)

Eqs. 11 through 13 show that, if the real size of the SOR is unknown, its
distance w.r.t. the camera can be determined up to an arbitrary scale. Therefore,
if the real dimensions of the SOR are not available, the radius ρ can arbitrarily
be set to 1. The other parameters involved in Eqs. 11 and 13 can all be computed
from the image. Specifically, the imaged world center xc can be obtained as shown
in the previous Section and, for any arbitrarily chosen ϑ, the point (xϑ, yϑ) on
the imaged cross section can be obtained as shown in [12].
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4 Experimental results and applications

In order to assess the performance of the calibration algorithm, both synthetic
and real-world tests were carried out. In the synthetic experiments, the refer-
ence SOR view of Fig. 3 was generated, corresponding to the following ground
truth camera parameters: f = 750 (focal length), (xp, yp) = (400, 300) (princi-
pal point), C = (1.6, 0.0, 0.7) (camera center). Ground truth data were corrupted
with increasing Gaussian noise values ranging from 0 to 1.6; for each of these
values, 1000 Monte Carlo trials were performed.

Table 1. Calibration performance: focal length and principal point (ground truth: 750,
(400, 300)).

σ avg(f) std(f) avg(xp) std(xp) avg(yp) std(yp)

0.1 752.99 6.650 400.83 3.920 299.11 0.681
0.2 749.73 7.524 399.34 4.622 300.13 0.883
0.4 748.53 8.770 398.90 5.388 299.96 1.138
0.8 751.51 11.572 399.07 7.242 299.86 1.809
1.6 744.05 15.543 394.47 9.374 301.16 3.156

Tab. 1 gives the internal calibration performance (average and standard devia-
tion) for the focal length and principal point. The results show that performance
undergoes a graceful degradation as the noise increases. Specifically, the aver-
age remains almost constant for all noise values considered, while the standard
deviation proportionally increases with noise.

Tab. 2 provides calibration performance for external parameters. Results
show that the rotation matrix is more sensitive than the camera center to image
noise. Specifically, both the average and standard deviation values of the angle
between homologous unit vectors increase with noise. Performance in terms of
camera center follows instead the same pattern as with internal parameters, with
almost constant average error values, and linearly increasing standard deviation
values.

Table 2. External calibration estimates for increasing noise values. Left: Average value
and standard deviation of the angle, in degrees, between each column of R and its
estimate. Right: Camera center (ground truth: x = 1.6, z = 0.7), with ϑ = 0.

rotation camera center
σ avg( 6 x) std(6 x) avg( 6 y) std(6 y) avg( 6 z) std( 6 z) avg(x) std(x) avg(z) std(z)

0.1 0.210 0.121 0.127 0.102 0.146 0.111 1.605 0.014 0.704 0.0042
0.2 0.250 0.173 0.144 0.134 0.185 0.148 1.598 0.015 0.700 0.0044
0.4 0.300 0.227 0.186 0.140 0.213 0.212 1.597 0.018 0.696 0.0054
0.8 0.479 0.261 0.284 0.166 0.347 0.273 1.600 0.023 0.698 0.0088
1.6 0.675 0.346 0.419 0.295 0.455 0.349 1.583 0.033 0.696 0.0105
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(a) (b) (c)

Fig. 4. (a): The reconstructed camera pose for the vase of Fig. 1(a). (b): A synthetic
view of the reconstructed vase. (c): A real photo of the vase from the same viewpoint
as in (b).

Real-world tests have concerned texture acquisition of a SOR object, and cam-
era calibration for the SOR and SAM cases. As shown in [12], internal camera
calibration permits both the 3D reconstruction and the texture acquisition of the
imaged SOR. However, having computed also the external camera parameters,
a much simpler method than the one proposed in that paper can be used to
acquire the texture on the SOR. Indeed, for each visible pair (ϑ, t) in Eq. 1, the
corresponding imaged point can be obtained directly via the projection matrix
P. In Figs. 4(a,b), the reconstructed camera pose and a synthetic view of the
textured model extracted from Fig. 1(a) are shown. The real photo in Fig. 4(c),
obtained from the same viewpoint as in (b), confirms the good result obtained,
despite the fact that the tree in the original image was highly foreshortened.

Tab. 3(left) reports the ground truth vs estimated values and the error per-
centage for each of the internal calibration parameters (in pixels) and one exter-
nal parameter (the third component of the camera center, in mm). The ground
truth was computed with a 3D calibration grid and the standard Tsai algorithm
[1]—the camera had a negligible radial distortion and square pixels. A similar test

Table 3. Calibration with a real SOR object (left) and with a turntable (SAM) se-
quence (right). Two different cameras were used. Ground truth and estimated values are
denoted respectively as v and v̂. The percentage error ε% is evaluated as 100 · |v− v̂|/v.

sor sam
parameter v v̂ ε% v v̂ ε%

f (focal length) 718.52 728.67 1.41 398.46 390.17 2.08
xp (principal point) 320.01 343.27 7.27 167.22 186.62 11.60
yp (principal point) 239.96 240.65 0.29 121.07 98.06 19.01
z (camera center) 217.82 198.26 8.98 240.01 217.37 9.43
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was conducted for the case of a turntable sequence. Tab. 3(right) shows the com-
parison between the calibration results obtained by using, as calibration artifact,
the virtual SOR segmented as in Fig. 5(a), with those obtained with the Tsai
algorithm. For both the real cases addressed, results show a similar performance
as for the noise sensitivity of the internal calibration parameters. Specifically,
the principal point is more sensitive w.r.t. noise than the focal length. This may
be explained by the fact, reported in the literature on SOR-based calibration
(see e.g. [12]), that the accuracy of the principal point (but not that of the focal
length) depends not only on image noise, but also on the relative position of the
imaged SOR axis w.r.t. the principal point itself. In particular, the estimation
uncertainty is bigger and bigger as imaged axis of symmetry get closer to the
principal point.

(a) (b) (c) (d)

Fig. 5. (a): The segmented virtual SOR for the object rotating on a turntable. A
medium-profile analog camera was used. (b): A complex object. (c,d): The 3D model
(point cloud, solid) extracted from a turntable sequence of the object in (b).

Figs. 5(b,c,d) show the reconstruction results for a complex object obtained
with a desktop 3D scanning system based on the calibration procedure described
in this paper. The system is composed by a turntable, an square pixel camera
and a laser stripe illuminator, which makes visible a vertical slice of the rotating
object being acquired. After virtual SOR image extraction and camera calibra-
tion performed by exploiting the same object being scanned, shape acquisition is
finally obtained by laser profile rectification and collation, as shown in [19]. The
3D model accurately reproduces the shape of the original object.

5 Conclusions and future work

A novel approach was proposed to automatically extract SOR-related image
primitives and calibrate both internal and external camera parameters from
coaxial circles, arising either from a single image of a SOR or from a turntable
sequence featuring arbitrarily-shaped objects. The method has been employed
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successfully in a desktop 3D laser scanner based on SAM and laser profile recti-
fication, obtaining good results.

Although the external calibration approach proposed is view-dependent (the
x-axis of the world frame being required to lie on the plane through the SOR
axis and the camera center), such 1-parameter dependence can be easily removed
given an identifiable reference point on either coaxial circle. Absolute external
calibration can be useful for the relative positioning of any pair of cameras having
the SOR and the reference point in their fields of view (see Fig. 6).

Z

X

X1

Camera 1

Camera 2

X2

pref

R1, 2 1, 2, t

Fig. 6. View-dependent external calibration can be made view-independent using a
common reference point pref, thus making it possible to compute the relative posi-
tioning transformation R12, t12. The xi’s are the view-dependent world axes, while x
through pref is the absolute one.

As future work, we are trying to obtain 3D textured models of generic objects,
extending the projection method developed for the SOR case. The idea is to
project the model point cloud (obtained with the laser scanner) onto each frame
of a video sequence of the real object undergoing SAM, after having registered
frame by frame the projected point cloud with the blob (obtained by background
subtraction) of the rotating object.



12

References

1. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D ma-
chine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal
of Robotics and Automation 3 (1987) 323–344

2. Caprile, B., Torre, V.: Using vanishing points for camera calibration. The Inter-
national Journal of Computer Vision 4 (1990) 127–140

3. Sturm, P., Maybank, S.: A method for interactive 3D reconstruction of piecewise
planar objects from single images. In: British Machine Vision Conference. (1999)
265–274

4. Liebowitz, D., Criminisi, A., Zisserman, A.: Creating architectural models from
images. In: EuroGraphics. Volume 18. (1999) 39–50

5. Daucher, N., Dhome, M., Lapreste, J.: Camera calibration from spheres images.
In: 3rd European Conference on Computer Vision. (1994) 449–454

6. Agrawal, M., Davis, L.S.: Camera calibration using spheres: A semi-definite pro-
gramming approach. In: 9th IEEE International Conference on Computer Vision.
Volume 2. (2003) 782–789

7. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on
PAMI 22 (2000) 1330–1334

8. Zhang, Z.: Camera calibration with one dimensional objects. In: 7th European
Conference on Computer Vision. Volume IV. (2002) 161–174

9. Chen, Q., Wu, H., Wada, T.: Camera calibration with two arbitrary coplanar
circles. In: European Conference on Computer Vision. (2004) 521–532

10. Wong, K.Y.K., Mendonça, P., Cipolla, R.: Camera calibration from surfaces of
revolution. IEEE Transactions on PAMI 25 (2003) 147–161

11. Wong, K.Y.K., Mendonça, P.R.S., Cipolla, R.: Reconstruction of surfaces of rev-
olution from single uncalibrated views. In: British Machine Vision Conference.
Volume 1. (2002) 93–102

12. Colombo, C., Del Bimbo, A., Pernici, F.: Metric 3D reconstruction and texture
acquisition of surfaces of revolution from a single uncalibrated view. IEEE Trans-
actions on PAMI 27 (2005) 99–114

13. Jiang, G., Quan, L., Tsui, H.T.: Circular motion geometry by minimal 2 points in
4 images. In: IEEE International Conference on Computer Vision. (2003) 221–227

14. Abdallah, S.M.: Object Recognition via Invariance. PhD thesis, The University of
Sydney, Australia (2000)

15. Colombo, C., Comanducci, D., Del Bimbo, A., Pernici, F.: Accurate automatic
localization of surfaces of revolution for self-calibration and metric reconstruction.
In: IEEE CVPR Workshop on Perceptual Organization in Computer Vision. (2004)
(On CD-ROM.)

16. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press (2000)

17. Xu, G., Tanaka, H.T., Tsuji, S.: Right straight homogeneous generalized cylinders
with symmetric cross-sections: Recovery of pose and shape from image contours.
In: IEEE International Conference on Computer Vision and Pattern Recognition.
(1992) 692–694

18. Rothwell, C.A., Zisserman, A., Marinos, C.I., Forsyth, D., Mundy, J.L.: Relative
motion and pose from arbitrary planar curves. Image and Vision Computing 10
(1992) 251–262

19. Colombo, C., Comanducci, D., Del Bimbo, A.: A desktop 3D scanner exploiting
rotation and visual rectification of laser profiles. In: IEEE International Conference
on Vision Systems. (2006) (On CD-ROM.)


