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Abstract

This paper addresses the problem of estimating time
to collision from local motion �eld measurements in
the case of unconstrained relative rigid motion and
surface orientation. It is �rst observed that, as long
as time to collision is regarded as a scaled depth, the
above problem does not admit a solution unless a nar-
row camera �eld of view is assumed. By a careful gen-
eralization of the time to collision concept, it is then
expounded how to compute novel solutions which hold
however wide the �eld of view. The formulation, which
reduces to known literature approaches in the narrow
�eld of view case, extends the applicability range of
time to collision based techniques in areas such as mo-
bile robotics and visual surveillance. The experimen-
tal validation of the main theoretical results includes a
comparison of narrow- and wide-�eld of view time to
collision approaches using both dense and sparse mo-
tion estimates.

1 Introduction
It is well known that the �rst-order local structure

of motion �elds (or motion parallax) embeds a great
deal of geometric and kinematic information about a
visual scene [9]. Evidence exists that biological visual
systems exploit their speci�c sensitivities to motion
parallax characteristic patterns such as dilatation and
shear to support the execution of tasks such as vi-
sual exploration and heading direction control [15]. In
computer vision, motion parallax extraction and anal-
ysis is often used in the place of more elaborate struc-
ture from motion techniques to achieve real-time per-
formance in tasks such as frame-rate image segmenta-
tion [2], visual tracking and pose estimation [6], free
space exploration [18], visual surveillance and obsta-
cle avoidance [14], and vision-based robot control [1].
The time to collision (i.e., informally, the temporal
distance between any scene point and the camera)

is an important scalar visual �eld, theoretically ob-
tainable from direct motion parallax measurements in
the case of a spherical image surface [10]. In prac-
tice though, visual analysis is based on planar cam-
eras, and speci�c criteria are to be devised so as to
ensure that meaningful time to collision estimates are
extracted from planar image motion observations. In
this respect, time to collision approaches developed
so far can be roughly divided in two classes, namely
exterospeci�c and propriospeci�c. Exterospeci�c ap-
proaches are based on a partial a priori knowledge of
either camera-scene relative geometry (e.g. frontopar-
allel surfaces [18]) or motion (e.g. dominant transla-
tion [3]); the main limitation of these approaches is
that they only work for carefully controlled operating
scenarios. Propriospeci�c approaches rely instead on
limiting the visual analysis about the optical axis of
perspective projection, thus reducing the camera �eld
of view (FOV) to ensure that the image plane closely
approximates locally the image sphere [17], [12], [4].
The main advantage of the simple narrow FOV con-
straint is that it can be applied whatever the external
environment; however, if the constraint fails to be met,
gross time to collision estimation errors have to be ex-
pected in the image periphery. This is most unde-
sirable, since modern hardware technology allows the
processing of large images in real-time, and a number
of applications (e.g., surveillance) may indeed bene�t
from using a wide FOV.

This paper addresses a revisitation of the concept
of time to collision, and describes a method for com-
puting this important parameter from local �rst-order
approximations of planar motion �elds given an arbi-
trarily wide FOV and unknown relative motion and
orientation. After some mathematical preliminaries,
in Section 2 it is shown that, about the optical axis,
time to collision can be e�ectively confused with scaled
depth and estimated from local motion �eld observa-



tions around the image origin. Yet, at larger visual
angles, a natural de�nition of time to collision should
include both the translational and rotational compo-
nents of rigid motion and, as a result, time to colli-
sion and scaled depth should be regarded as di�erent
visual entities. Section 3 provides two novel de�ni-
tions of time to collision for an arbitrarily wide FOV,
referring respectively to a planar and spherical sen-
sor geometry, and converging to scaled depth in the
particular case of narrow FOV. A closed-form solu-
tion using linear combinations of planar motion �eld
invariants is obtained in Section 4 for the two times
to collision by applying elementary di�erential geom-
etry and projecting the planar motion �eld structure
onto the unit sphere. In an experimental validation of
the theoretical framework (Section 5), results of tests
featuring both dense (optical 
ow) and sparse (active
contours) a�ne motion estimates are presented and
discussed. Finally, in Section 6 conclusions are drawn
and future work is outlined.
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Figure 1: Geometry of image formation under planar and

spherical projection.

2 Scaled Depth vs Time to Collision
Preliminaries. Let the imaged scene be composed
of rigid surfaces in relative motion w.r.t. the cam-
era. The geometry of image projection is illustrated
in Fig. 1. The camera frame is fOijkg, where O the
center of projection and k the depth axis. The per-
spective projection p = x i+y j+k of a visible surface
point in space P = R r is de�ned by p = P =Z where,
without loss of generality, focal length f is set to 1.
The planar motion �eld _p = u i+v j is expressable as
a function of image position p and surface depth Z.
The local motion �eld structure, or motion parallax,

is encoded in the Jacobian matrix @ _p=@p evaluated at
p, i.e. in the four di�erential invariants of the motion
�eld: divergence (div), curl (rot), and (two compo-
nents of) deformation (defx, defy) [17]. It is not dif-
�cult to show [5] that the four invariants depend on
image position p, depth Z, surface orientation (gradi-
entrZ), and relative twist screw (rigidmotion vectors
V and 
). Speci�cally, the deformation vector def =
defx i + defy j can be expressed as the sum of two
terms, taking into account respectively translations
and rotations: def = defV (p;rZ;Z;V )+def
(p;
).
The term def
 vanishes in the case of pure translation
(
 = 0) or, whatever 
, at the image origin (p = 0),
while defV vanishes either in the case of pure rotation
(V = 0) or, whatever V , if the tangent plane at P is
parallel to the image plane (frontoparallel condition,
rZ = 0).

Time to Collision as a Scaled Depth. In the re-
cent computer vision literature, the terms \time to
collision" and \scaled depth" are used interchange-
ably [17], [18], and referred to the scalar �eld

tz = �
Z

V �k
(1)

giving at each image location p the ratio between sur-
face depth at P and the camera-surface translational
velocity component directed towards the image plane
(a positive quantity for camera and surface approach-
ing each other).

Due to the well known speed-scale ambiguity, the
structure from motion problem can only be solved up
to an unknown scale factor, so that scene structure is
usually expressed in terms of scaled depth tz. Hence,
in principle, computing time to collision as a scaled
depth implies solving in advance the structure from
motion problem, and speci�cally separating the trans-
lational and rotational components of relative rigid
motion [11], [8]. However, an approximation of scaled
depth can be obtained from the �rst-order structure
of the planar motion �eld without solving explicitly
for rigid motion, provided that some constraints are
set on relative motion or viewing angles.

Approximation Constraint Refs

Dominant Translation k
k � 0 [3], [7]
Frontoparallel Surface krZk � 0 [16], [18]
Narrow Field of View kpk � 0 [14], [17]

Table 1: Constraints for scaled depth approximation.

Table 1 shows some popular constraints used for scaled
depth approximation.

Typo
this should read

||p|| \approx 1

Typo
this should read

p = k



A general expression can be easily derived involving
scaled depth at a generic image point [5]:

t�1z =
div� def �

V
� 3 def'




2
; (2)

where � is the (unknown) surface tilt angle, def =
kdefk, and def� = cos 2� defx + sin 2�defy is de�ned
as directional deformation (in the image plane direc-
tion �), being defx = def cos 2� and defy = def sin 2�.
The approximating formulas for scaled depth can be
obtained by using the constraint formulas of Table 1
in eq. (2). Of course, the stronger the operational
constraints are, the easier is the scaled depth estima-
tion process, at the expense of an higher probability of
gross systematic errors when the constraints fail to be
met perfectly. This is often the case when the dom-
inant translation and the frontoparallel surface con-
straints are set. The narrow �eld of view constraint
limits the range of visual directions to a small visual
angle around the optical axis, for which it is assumed
that no signi�cant deformations exist in the �rst-order
motion �eld structure. In such a case, scaled depth
approximation has the form of a bound:

t�1z =
div� def

2
: (3)

Several enhancements to the basic narrov FOV bound
of eq. (3) have been proposed so far, by introducing,
whenever possible, additional contraints such as �xa-
tion, partial knowledge of motion, etc. [4], [18].

Criticism. The strict requirement of the narrow
FOV condition for approximating time to collision as
a scaled depth is illustrated in Fig. 2, showing the
reciprocal of time to collision (often referred to as
collision immediacy) plotted as a function of the co-
latitude angle # spanning half of the overall visual
�eld (FOV = 160 deg) in the image direction ' = 0
(see Fig. 1). The situation described in the �gure is
geometrically equivalent to the frontoparallel observa-
tion of a forehand stroke at tennis, where the player is
simultaneously approaching the net and rotating his
racket to hit the ball. The �gure shows that, in a gen-
eral case of surface rototranslation like this, the nar-
row FOV constraint approximation cannot be used to
bound scaled depth at co-latitude angles wider than a
few (say, �fteen) degrees, since the true value of scaled
depth goes out of its bounds. This is because, while
eq. (1) only refers to translation and disregards rota-
tion, image divergence and deformation do depend on
both translational and rotational velocities. Eq. (2)
can be used to show why scaled depth cannot be de-
termined from �rst-order motion �eld structure but

under special conditions. Indeed, it can be shown [5]
that although the sum def �

V
+ def'



in eq. (2) can al-

ways be bounded, a bound for def �
V
� def'



does never

exist, so that the two directional deformations cannot
be individually bounded: again, to have that, transla-
tion and rotation should be decoupled.
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Figure 2: Erroneous bounds for scaled depth immediacy.

Another important observation should now be
made about the general non appropriateness of inter-
preting scaled depth as a time to collision. Indeed,
consider the case of a tennis player rotating his racket
in place just in front of a camera (or, equivalently,
consider someone trying to slap you!): as evident from
Fig. 3, while such a pure rotation about an axis exter-
nal and parallel to the camera plane corresponds no
doubt to a dangerous situation for the observer, yet
the scaled depth collision immediacy happens to be
identically zero everywhere.

From the discussion above, we can state that: (i )
scaled depth and time to collision should be regarded
as distinct concepts; (ii ) recovering scaled depth is a
more di�cult task than determining time to collision,
since there is in general the need to separate transla-
tions from rotations. The rest of the paper is devoted
to (iii ) give alternative de�nitions of time to collision
which can still hold when scaled depth fails; (iv ) show
how to compute the newly de�ned times to collision
using the motion �eld and its �rst-order structure.

3 Time to Collision Revisited

There are, of course, diverse possible de�nitions of
wide FOV time to collision extending eq. (1), each re-
ferring to a precise application context and geometry
of the observer. In the following, two distinct de�ni-
tions of time to collision are given, relying respectively
on a spherical and a planar observer model.

The spherical time to collision is the time tr it
would take a point P to reach the camera center by
traveling at a uniform velocity _P �(�r) r along the line



(a) (b)

(c) (d)

Figure 3: (a),(b): two frames of a rotating plane; associ-

ated motion �eld (c) and scaled depth (d). Scaled depth

immediacy vanishes identically.

of sight, i.e.,

tr = �
R
_P �r

: (4)

Eq. (4) provides a convenient way of de�ning time to
collision having a sphere as the imaging surface. Such
a de�nition is best suited to mobile robotics applica-
tions involving a robot with no dominant dimensions.
The planar time to collision is de�ned as the time tp
it would take a point P to reach the camera plane
by traveling at a uniform velocity _P �(�k)k along the
optical axis, i.e.,

tp = �
Z
_P �k

: (5)

Eq. (5) is the natural extension of eq. (1) to the gen-
eral case of planar observer and relative rototransla-
tion, the optical axis of perspective providing the nor-
mal to the surface of collision (camera plane). In a
driving application context, planar time to collision
could be appropriate in the case of a vehicle with dom-
inant transversal dimensions (think also of an aircraft
and its wings).

Fig. 4 shows how, di�erently from scaled depth,
both the spherical and planar times to collision de-
�ned above succeed to providing collision information
in the \slap" sequence of Fig. 3. The novel de�nitions

(a) (b)

Figure 4: Spherical (a) and planar (b) times to collision

for the case of Fig. 3 (brighter means closer).

of eqs. (4) and (5) hold whatever the relative motion
and the FOV, thus generalizing eq. (1) to the case of
arbitrarily wide FOV. Indeed, the de�nitions do not
refer to rigid motion vectors in a separate way, but re-
gard the global e�ect of a given rigid motion at a given
point. It is easy to prove [5] that both the equations
yield scaled depth when the narrow FOV constraint
is met; in particular, all given time to collision de�-
nitions are approximately equivalent to each other for
small values of #, while they become signi�cantly dif-
ferent for FOVs of 30 degrees or larger. This con�rms
the fact that scaled depth is well approximated as a
time to collision only at small co-latitude angles.

4 Generalizing the Bounds
In this Section, a closed form bound is derived for

the two times to collision de�ned before, and an op-
erational way to compute each bound from local im-
age plane observations is provided. First of all, notice
that, as a direct consequence of eqs. (4) and (5), the
planar time to collision can be obtained at any co-
latitude from the spherical time to collision and the
spherical motion �eld _r = u0 t + v0 s (refer again to
Fig. 1) as

t�1p = t�1r + tan#u0 : (6)

It is also easy to show that the spherical time to col-
lision is bounded, at any co-latitude angle #, by the
divergence and deformation of the spherical motion
�eld, i.e.,

t�1r =
div0 � def 0

2
: (7)

Eq. (7) is proved by regarding the plane tangent to
the unit sphere at r as the image plane of a virtual
camera with optical axis r, and noting that an equa-
tion akin to eq. (3) holds at the origin of the virtual
image plane|see also [17].



In order to compute both the spherical and planar
times to collision by planar motion �eld estimates,
there remains to show how to obtain spherical quan-
tities from image plane observations. The following
result can be proved [5], allowing to project the pla-
nar motion �eld and its �rst-order structure onto the
unit sphere.

Lemma (Correspondence of Planar and Spheri-
cal Motion Fields)The spherical divergence and de-
formation can be obtained by projection onto the unit
sphere of the planar motion �eld linear structure, as

div0 = div� 3 tan#u 0 ;

def 0 =
h
(def' � tan#u 0)

2
(8)

+
�
m# def

'+�=4 + n# rot � tan# v 0
�2�1=2

;

where m# = 1

2
(sec #+ cos#), n# = 1

2
(sec #� cos #),

and the planar and spherical motion �elds are related
one-to-one by�

u0

v0

�
=

�
cos2 # cos' cos2 # sin'
� cos# sin' cos # cos'

� �
u
v

�
: (9)

Sketch of proof. First, the virtual camera concept in-
troduced above is exploited to derive expressions for _r
and _p as functions of r, V and 
. Eq. (9) follows then
easily by noting that r = cos #p and expressing _r and
_p in the same coordinate system. To prove eq. (8), a
basic result from di�erential geometry is used, stating
that, if a smooth map exists between two manifolds,
then the tangent spaces at corresponding points in the
two manifolds are linearly related by the derivative of
the same map [13]. In this case, the map is perspec-
tive, and the manifolds are the planar and spherical
image surfaces. In particular, the �rst-order structures
of the planar and spherical �elds, encoded respectively
in the Jacobian matrices of the planar and spherical
motion �elds, are related to each other linearly, via two
matrices depending on #, ', u0 and v0. Such matrices
are �nally used to get the divergence and deformation
components in the spherical case, thus obtaining the
desired result. 2

Fig. 5 illustrates the results for the case of a planar
visible surface rototranslating rigidly w.r.t. the camera
in the same motion and surface conditions of Fig. 2.
A glance to Fig. 5 shows that, di�erently from Fig. 2,
the true values of the spherical and planar times to
collision always remain inside the bounds obtained in
this Section.
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Figure 5: Spherical (a) and planar (b) collision immedia-

cies, and their estimates.

5 Experimental Results
A number of experiments were conducted using the

framework above to estimate time to collision from
both videotape and live image sequences.

Time to collision from dense optic 
ow.
Figs. 6(a),(b) show two subsequent frames of a video-
tape sequence featuring the rotation of a rigid 
at
panel in front of the camera. This situation is geo-
metrically equivalent to having a camera mounted on
a mobile robot rotating about a given point of the
ground 
oor in proximity of a wall (also compare with
Fig. 3). Fig. 6(c) shows the computed optic 
ow for a
speci�c frame of the sequence. Optic 
ow computation
was done by tracking image corners, and then inter-
polating linearly the obtained sparse image motion so
as to get a smooth and dense motion �eld approxima-
tion (corner tracking also automatically provides an
estimate of motion parallax). Due to the speci�c kind
of 3D motion of the panel, the resulting image motion
features a positive divergence in the left part of the
image (where the panel is coming closer to the cam-
era), and a negative divergence in the right part of the
image|a zero divergence being obtained in correspon-
dence of the vertical axis of rotation. Figs. 6(d){(f)



show in order average scaled depth, planar and spheri-
cal collision immediacies: negative or zero immediacies
are indicated in black. As evident from a qualitative
comparison of the three results, the spherical and pla-
nar times to collision appear to be more appropriate
than scaled depth to monitor rotations w.r.t. a planar
object (it is evident, in Figs. 6(e),(f), the image area
corresponding to approaching motion). In fact, un-
like eqs. (6){(7), the scaled depth immediacy bound
of eq. (3) fails completely to take into account the ef-
fect of 3D rotations on motion vectors, and only uses
planar motion parallax to get a time to collision esti-
mate. A quantitative analysis of the results con�rms
this point (with an error of within 5% w.r.t. the ground
truth for the planar and spherical times to collision).

(a) (b)

(c) (d)

(e) (f)

Figure 6: A rotating plane. (a), (b): Two subsequent

frames of the original sequence. (c): Computed optic 
ow.

(d){(f): Scaled depth, planar and spherical immediacies

(brighter means closer).

Time to collision from active contour deforma-
tions. Fig. 7(a) shows two frames of a real-time se-
quence featuring a rototranslating hand as if \slap-
ping" the camera. The hand is tracked using an ac-
tive contour, whose deformations are used to compute

the average �rst-order parameters of image motion as
in [4]. The tracker is initialized at startup using the
computer mouse, and deforms at run-time in an a�ne
way. The tracker includes a Kalman �lter, ensuring
a stable and robust behavior even in the presence
of modeling uncertainties and distractors. The com-
puted scaled depth and planar collision immediacies
are reported in Figs. 7(b),(c) respectively. The �gures
show that, after a short transition time due to contour
prediction inertia, while the average value of the pla-
nar time to collision keeps quite close to the ground
truth value (speci�cally, around 4 s to collision), the
time to collision bound based on scaled depth is prac-
tically useless, due to the fact that the slapping action
involves more a hand rotation than a translation.
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Figure 7: A slapping hand. (a): Two frames of the orig-

inal sequence, with superimposed active contour tracker.

Scaled depth (b), and planar (c) collision immediacies.



6 Conclusions and Future Work

The main contribution of the paper is to show that,
although scaled depth and time to collision are usually
considered as the same visual entity, they generally
di�er, especially in the far visual periphery. Better
still, time to collision can be reliably estimated what-
ever large the �eld of view by suitable combinations of
�rst-order motion �eld parameters, while scaled depth
cannot.

The work can be expanded in several directions. A
more general di�erential geometry formulation can be
introduced to study the problem of visual parameters
estimation in the case of general sensor shape and to
prove the feasibility of the computational framework
to applications involving non rigid motions. Currently,
a new model of space-variant sensor is being experi-
mented with, which was explicitly designed to carry
out the computations required by the approach with
a minimum of computational e�ort.
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