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Abstract 

A two-layers architecture for optical flow computa- 
tion i s  here presented, which uses neural nets in the 
lower layer and a special relaxation system in the up- 
per layer. The high degree of parallelism of the ar- 
chitecture makes it particularly suitable for  real-time 
applications. 

1 Introduction 

The retrieval of 3-D motion and structure informa- 
tion from an image sequence is typically a two-steps 
process [l]. The first step is to extract, from the 
sequence, an estimate of the so-called motion field, 
which is the 2-D velocity field arising from the pro- 
jection of the real (3-D) motion of the objects onto 
the image plane. The second step is to infer, from the 
evaluated two-dimensional field , the three-dimensional 
structural and/or kinematical properties of the im- 
aged objects. The 2-D velocity field ( v z ,  w Y )  obtained 
under the assumption of constant image brightness 
(dE/d t  = 0) is called opizcal f low (21; it represents 
a good estimate of the motion field, under particu- 
lar conditions of surface reflectance, motion and il- 
lumination [3]. The basic equation that relates the 
variations of brightness - the spatio-temporal gradient 
(Ez, E,,&) - to the optical flow is: 

(vz, wy) . (Er, Ey) + Et = 0. (1) 

Unfortunately eq. 1, often referred to as the “opti- 
cal flow constraint”, is not sufficient to determine uni- 
vocally the optical flow field. Act>ually, it determines 
a one-dimensional affine subspace where the solution 
lies, which is usually referred to as constraint line. The 
uncertainty underlying optical flow computation has a 
biological counterpart - the so-called “aperture prob- 
lem” for human vision. That is, as the movement of 
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a straight, long moving edge is perceivable only along 
the direction perpendicular to the edge itself [4], as 
the “local” information involved in eq. 1 is sufficient 
only for the determination of the optical flow compo- 
nent parallel to the spatial gradient (see Fig. 1). To 
recover the optical flow component perpendicular to 
the spatial gradient “multicontraints” strategies can 
be used, which are based on the solution of an overcon- 
strained problem [5]. The idea is to combine (or “to 
cluster”) the local informations from neighbor points 
in the image plane, and then to minimize the error 
on the cluster according to a certain functional. For 
example, Campani and Verri [6] used a least-squares 
optimization, while Schunck proposed in [7] a func- 
tional based on statistical considerations. 
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Figure 1: The constraint line and its associated gra- 
dient component of optical flow. 

A key issue in optical flow computing is the de- 
velopment of algorithms suitable for real-time hard- 
ware implementation. Few experiences exist of paral- 
lel systems which compute optical flow using the ana- 
log CMOS technology [8] [9]. 

In this work, a two-layers architecture for optical 
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flow calculation is described, which uses neural nets 
and a new clustering technique based on relaxation. 
Both the high degree of parallelism and the asyn- 
chronous nature of the architecture make it partic- 
ularly suitable for analog VLSI implementation. 
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Figure 2: The twelayers architecture of the optical 
flow estimation system. 

2 A Two-Layers Architecture 

In Fig. 2 the two layers of the architecture are 
shown: 

0 The lower layer, which is completely neural, is 
made up of a grid of identical and independent 
multilayer perceptrons [lo], one for each point 
where optical flow has to be determined. Each 
perceptron coiiiput.es the constraint line which 
the local solution belongs to. In other words, 
the lower layer carries out optical flow computa- 
tions in a “local” fashion, thus yelding, as men- 
tioned above, informations on the optical flow 
component parallel to the spatial gradient. 

0 The (missing) optical flow component perpen- 
dicular to the spatial gradient is then retrieved, 
in the upper layer, on the basis of “global” com- 
putations, i.e. the diffusion of the local informa- 
tions throughout the image. For this purpose, 
the upper layer is ina.de up of a grid of inter- 
connected units, identical in number and spatial 
arrangement to the lower level neural networks. 
Each upper unit iteratively updates the local 
optical flow components, always keeping every 

point in the velocity space on the relative con- 
straint line, as given by the lower layer network. 
The optical flow is available at the output of this 
layer after a short relaxation process. 

In the following, some details are reported for each 
layer. 

2.1 The Lower Layer 

Each neural network in the lower layer computes 
the optical flow component along the spatial gradient 
of brightness, that is: 

which determines univocally the constraint line which 
the solution belongs to. Each network has a quite 
small receptive field ( a  square of 3 x 3 pixel), accord- 
ing to  the observation that the computation of the 
constraint line is entirely a matter of “local” compu- 
tation. 

Figure 3: Architecture of one of the networks in the 
lower layer. 

A 5-layers neural network was used, whose archi- 
tecture is shown in Fig. 3. The input layer is fed by 
3 receptive fields taken at consecutive time steps, in 
such a way that the perceptrons (which perform static, 
i.e. memoryless, mappings between input and output) 
exploit the required dynamical properties. The output 
is an estimate of the optical flow along the gradient di- 
rection for the middle time step. Therefore, there are 
3 x 3 x 3 = 27 input neurons, and 2 output neurons. 
The 3 hidden layers are of decreasing size, respectively 
of 36, 12 and 4 neurons. This sizing was suggested 
by the natural encoding properties of neural networks 

In a separate learning stage, a single prototype 
network has been trained by showing it moving 
synthetically-generated edges of different speed, incli- 
nation (with respect to the sides of the receptive field) 
and sharpness. An “edge” is here defined as a surface 
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whose transversal profile is a sigmoidal function U of 
the kind: 

, (3) 
1 + tanh(pz/2) 

2 U(.) = E” . 

where the parameter /I accounts for the sharpness of 
the edge. After training, the prototype network has 
been “cloned” in several exemplars, to form the lower 
layer grid. 

The advantage of having a small receptive field is 
that, in such a small area, the network is not likely 
to  “see” complex features. A learning stage with sim- 
ple features only (namely segments) has proved to be 
effective to  make the networks to operate well under 
a wide span of conditions. The problem of such an 
approach is that a small receptive field is affected by 
uncertainty, as discussed referring to eq. 1. The solu- 
tion of this problem is demanded to the upper layer. 

2.2 The Upper Layer 

The upper layer is organized so as to perform a 
relaxation process on the data from the lower layer. 
This yields to the formation of clusters in the velocity 
space, each one with a high probability of belonging 
to the same moving object. For each neural network 
in the lower layer, a unit in the upper layer is de- 
fined. The interconnections relative to a single upper 
layer unit are shown in (Fig. 4). Each unit receives 
as inputs the outputs of the corresponding lower net- 
work, (us, uy), which represent the initial conditions 
for the relaxation process. Each unit delivers two out- 
puts, ( v o ,  vy), corresponding to the optical flow vector 
currently computed, which is available for the “out- 
side world’’ only at the end of the relaxation process. 
Moreover, each unit has several other inputs, ( v : , ~ ; ) ,  
which are the outputs of other upper units in a speci- 
fied neighborhood. For instance, in Figg. 2 and 4 there 
are four of such inputs, connected so as to form a Von 
Neumann neighborhood; note from Fig. 2 that the 
neighborhoods intersect one another, thus allowing in 
principle an output speed relative to a certain image 
point t o  propagate its influence over all the other im- 
age points. In such sense, the relaxation process acts 
also as an “information diffusion process”. 

Consider now the details of the diffusion process. 
First of all, remember that the inputs from the lower 
layer define the constraint line at a given image point 
(z,y) . During the diffusion process, the correspond- 
ing unit is allowed to update its outputs, with the 
condition that the point they represent in the velocity 
space always remain onto the constraint line assigned 
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Figure 4: Interconnections between one of the upper 
layer units, the units in its neighborhood and the cor- 
responding network in the lower layer (top view). 

to that unit. This can be easily accomplished by defin- 
ing the constraint line in a parametric fashion, namely: 

(vz ,vy)  = (ul,uy> +p(sinB,-cosO) (4) 

with tg8 = (uy/uz).  In so doing, the outputs (vz, vY) 
depend on the p parameter only, and the relative point 
in the velocity space is always ensured to  belong to the 
proper constraint line. The system evolves by progres- 
sively adjusting the p parameter at each image point - 
that is p := p +  Ap, starting with p = 0 - until a stable 
value, which corresponds to the formation of clusters 
in the velocity space, is reached. 

In Schunck [7], the cluster formation was reached 
by finding the set {(wi,wf)} of interceptions of the 
constraint lines of all the points in the neighborhood 
with the constraint line relative to the image point of 
optical flow evaluation, and then performing a clus- 
ter analysis on that set. In our approach, computing 
is performed in a highly distributed fashion. In fact, 
although not explicitly computed, every intersection 
point (w:, wf) in the velocity space acts as an “at- 
traction point” for the current upper unit outputs; 
this is done by simply updating the p parameter of 
each unit based on the value of the inputs from its 
neighborhood. The updating rule is: 

Ap = E@(&) (5) 
a 

where a() is a bell-shaped function of the Euclidean 
distance 

d’ = I(d, vf) - (vz, vy)l  

between the current upper unit output vector and that 
of any of its neighbors [12]. The global change of the 



output is given by the superposition of the “elemen- 
tary interactions” over the neighborhood. The special 
non linear shape of @() provides a form of controlover 
the diffusion process, in that it assigns a strength to 
each interaction between points in the velocity space. 
As an effect, the reduction of the influence of neigh- 
bors whose output points in the velocity space are 
“too near” or “too far” from the current unit out- 
put points is achieved, t,hus avoiding uncorrect flow 
estimates which could occur, in these cases, in the 
presence of strong interactions between neighbors [7]. 

3 Experimental results 

quite correct, despite the low number of iterations in 
the diffusion process. 

The system was tested both with synthetical and 
real-world 128 x 128 images, for which a 32 x 32 optical 
flow field was computed. 

Figure 6: The optical flow in the gradient direction, 
as computed by the lower layer. 

Figure 5: One of the images of the ‘‘moving circle” 
sequence. 

Fig. 5 shows a synt,lietic dark circle traslating up- 
wards on a light background. Note that the bright- 
ness changes in the image are localized in a small area 
between the figure and the background; therefore, ac- 
cording to equation 1, the optical flow is expected to 
be significant only in this area, and zero elsewhere. 
Note also that in this case the “true” optical flow is 
a vector field in  wliich all vectors are identical and 
aligned in the same direction, since the square is trans- 
lating by rigid motion. Fig. G shows the optical flow 
as computed by the lower layer. In Fig. 7 the final 
flow as produced after the relaxation process in the 
upper layer is shown (16 relaxation steps have been 
performed): note that the computed optical flow is 
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Figure 7: Optical flow, as computed by the upper layer 
of the system. 

The clustering properties of the relaxation process 
are evident from Figg. 8 and 9 which show the optical 
flow in the velocity space - where each speed is repre- 
sented by a small circle - a t  the input and output of 
the upper layer, respectively. 

Experiments with 5 x 5 pixel square neighborhoods 
in the upper layer, in the place of Von Neumann neigh- 
borhoods, demonstrated that an enhancement in the 
quality of the computed optical flow - due to the in- 
crease of information available at each image point - is 
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achievable at the expense of an increment in compu- 
tation time. Further experiments with real sequences 
have also proven that a high acquisition noise immu- 
nity is obtainable with this system, mainly due to  
the intrinsic selection of reliable velocity vectors which 
takes place at the upper layer level. Even better re- 
sults in the formation of clusters in the velocity space 
have been achieved by performing a smoothing of the 
evaluated optical flow with a regularization procedure 
which can preserve optical flow discontinuities. Fur- 
ther details can be found in [12]. 

Figure 8: The optical flow computed by the lower layer 
(velocity space). 

Figure 9: The optical flow computed by the upper 
layer (velocity space). 
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