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Abstract This paper presents a novel stereo Visual
Odometry (VO) framework based on Structure from
Motion (SfM), where a robust keypoint tracking and

matching is combined with an effective keyframe selec-
tion strategy. In order to track and find correct feature
correspondences a robust loop chain matching scheme

on two consecutive stereo pairs is introduced. Keyframe
selection is based on the proportion of features with
high temporal disparity. This criterion relies on the ob-

servation that the error in the pose estimation prop-
agates from the uncertainty of 3D points—higher for
distant points, that have low 2D motion. Comparative

results based on three VO datasets show that the pro-
posed solution is remarkably effective and robust even
for very long path lengths.

Keywords Visual Odometry · Structure from Motion ·
RANSAC · feature matching · keyframe selection

1 Introduction

The real-time estimation of the camera trajectory and
the construction of a 3D map of the scene, based on im-

ages acquired in an unknown environment, has received
an increasing interest in the computer vision commu-
nity during the last few years. This task is usually re-

ferred to as visual Simultaneous Localization And Map-

ping (vSLAM) [7]. vSLAM systems typically include a
Visual Odometry (VO) module [26,30], aimed at the

incremental estimation of the camera path using local
information. Optimization algorithms over the whole
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estimated path and map can also be present, so as to
enforce global consistency when revisiting part of the
scene [15].

Related work on camera path estimation—which is
the main topic addressed in this paper—is discussed

hereafter.

1.1 Related Work

Methods for real-time camera tracking are mainly based

either on probabilistic frameworks [23,7] or on the
SfM paradigm [26,24]. In the former case they employ
Bayesian filtering techniques, such as the Extendend

Kalman Filter (EKF), to couple together in the same
process camera positions and 3D points, incrementally
updated. On the other side, the latter approaches ex-

ploit the epipolar geometry constraints [14] to com-
pute the camera positions and the 3D map through
robust estimators, such as the RANdom SAmple Con-

sensus (RANSAC) [9]. Successive refinement steps are
usually applied by iterative non-linear optimization
techniques—such as bundle adjustment [35]—over a se-

lected sub-set of frames (keyframes).

Both kinds of approaches have their drawbacks. In

the Bayesian frameworks, points have to be added and
discarded as the estimation proceeds, since the 3D map
cannot grow excessively for computational limits, thus

resulting in a loss of estimation accuracy. On the other
hand, in order to achieve real-time operation, keyframe-
based approaches can perform local optimizations only

occasionally. Nevertheless, according to [33], keyframe
based solutions outperform Bayesian approaches, due
to their ability to maintain more 3D points in the esti-

mation procedure.
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Stereo configurations have been widely used [26,27,

20,22,11]. In general, stereo systems provide better so-
lutions than single camera setups, since the rigid cali-
bration of the cameras increases the accuracy of the 3D

map and provides more robust matches. This avoids is-
sues such as the delayed 3D feature initialization [23]
(i.e. when a point is seen for the first time) and the

scale factor uncertainty [34].
Camera tracking systems can also be characterized

by the feature matching strategy adopted to detect

and track keypoints across the image frames [6,17,25,
29,18,11]. In addition to the classical keypoint match-
ing and tracking methods [17], solutions robust to high

degrees of blur [29], relying on edges [18], with hier-
archical pose refinement [32], or exploiting the high
computational power offered by modern GPUs through

a dense approach [25] have been proposed. Effective
stereo matching strategies [11] and sequentially over-
lapping 3D maps [8] have also been employed.

1.2 Our Contribution

The main idea of the proposed system, named SSLAM,
is to use only highly reliable data in the estimation pro-
cess, as reflected mainly in the feature matching scheme

and the choice of good frames.
The feature matching process is the main source of

noise in a camera tracking system. Wrong matches can

lead to erroneous estimates, which can be only par-
tially corrected using robust outlier rejection strategies.
To limit as much as possible the introduction of er-

rors in early processing stages, we choose to employ
an accurate and relatively slow matching strategy in-
stead of less accurate solutions. In particular, a ro-

bust loop chain matching scheme is adopted, improving
upon VISO2-S [11], for using a more robust detector-
descriptor pair. The adopted robust matching strategy

avoids upfront the introduction of strong noise and thus
the need of further global optimization steps. In ad-
dition, this strategy can find correspondences also in

images with high spatial and/or temporal disparity—a
critical issue for any approach based on tracking [20].

The other aspect characterizing our system is the se-

lection of the keyframes used as base references for the
measurement of the 3D landmark positions for the cam-
era trajectory computations. Keyframes are selected

only if a strong feature temporal disparity is detected.
This idea arises from the observation that errors may
propagate also from the uncertainty of the 3D points,

which is higher for distant points corresponding to low
temporal flow matches in the images. The proposed
strategy can be more stable and effective with respect to

using a threshold on the average temporal disparity [19]

or a constant keyframe interleaving [26]. Moreover, eval-

uating 2D measures such as the feature temporal flow
leads to a more robust keyframe selection compared to
approaches that evaluate the distance among frames in

3D space [11].
This paper significantly extends our previous

work [2], by providing a detailed description of the pro-

posed method in Sect. 2, followed by a comprehensive
evaluation and comparison on the KITTI [10], New Col-
lege [31] and New Tsukuba [21] datasets in Sect. 3.

Conclusions and final remarks are given in Sect. 4.

2 Method overview

Given a calibrated and rectified stereo sequence S =
{ft}, where the frame ft = (I lt , I

r
t ) is composed by

the left I lt and right Irt input images taken at time
t ∈ N, SSLAM alternates between two main steps (see
Fig. 1). The first step matches keypoints between the

last keyframe fi and the current frame fj , while the sec-
ond estimates the relative camera pose Pi,j = [Ri,j |ti,j ]
∈ R

3×4, where Ri,j ∈ R
3×3 is the rotation matrix and

ti,j ∈ R
3 is the translation vector. If the new pose is

successfully estimated and sufficient temporal disparity
is detected between fj and fi, the frame fj is updated

as the new keyframe.
Assuming that Ri,i = I and ti,i = 0 (where I

and 0 are respectively the identity matrix and the

null vector) the absolute pose at time n is defined
as Pn = P0,n. Pn can be computed by concatenat-
ing the poses P0,0,P0,k . . . ,Pi,jPj,n, where time steps

0 < k < . . . < i < j belong to accepted keyframes and
n > j is the current frame.

Fig. 1: Pipeline of the proposed method

2.1 Loop Chain Matching

The proposed loop chain matching draws inspiration
from the circle match of VISO2-S [11], as the candi-

date correspondences should be consistent among the
four image pairs (I li , I

r
i ), (I

l
i , I

r
j ), (I

r
i , I

r
j ), (I

l
j , I

r
j ). How-

ever differently from [11], instead of a less accurate key-

point detector and descriptor based on simple image
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filters, a robust detector and descriptor pair is used.

This also avoids using the two step matching strat-
egy employed by VISO2-S to further refine correspon-
dences, and permits achieving longer and more stable

keypoint tracks, crucial for the pose estimation, with-
out re-initialization issues and keypoint losses occurring
with tracking strategies such as KLT [20].

In particular, the HarrisZ detector [3], which pro-
vides results comparable to other state-of-the-art de-
tectors, is used to extract robust and stable corner fea-

tures in the affine scale-space on the images I li , I
r
i , I

l
j , I

r
j .

The sGLOH descriptor with the sCOr Nearest Neigh-
bour matching [4] on the L1 distance is used instead

to obtain the candidate correspondences between im-
age pairs (I li , I

r
i ), (I

l
i , I

r
j ), (I

r
i , I

r
j ), (I

l
j , I

r
j ) after spatial

and temporal constraints have been imposed to refine

the candidates matches (see hereafter).
Let xd

s = [xd
s , y

d
s ]

T ∈ R
2, d ∈ {l, r}, s ∈ {i, j} be a

point in the image Ids . A spatial match (xl
s,x

r
s) between

the images on the same frame is computed by the stereo

epipolar constraints imposed by the calibration

|xl
s − xr

s| < δx (1)

|yls − yrs | < δy (2)

where δy is the error band allowed by epipolar rec-
tification and δx is the maximum allowed disparity
(i.e. the corresponding stereo point must lie inside a

2δx × 2δy rectangular window). In the case of a tem-

poral match (xd
i ,x

d
j ) between corresponding images at

different frames, the flow restriction

∥ xd
i − xd

j ∥< δr (3)

is taken into account, where δr is the maximum flow

displacement (i.e. the corresponding point in the next
frame must lie inside a circular window of radius δr).
Only matches that form a loop chain

C =
(
(xl

i,x
r
i ), (x

l
i,x

l
j), (x

l
j ,x

r
j), (x

r
i ,x

r
j)
)

(4)

are retained (see Fig. 2); however, some outliers can still

be present. For this reason, each matching pair of the
loop chain C is further filtered by RANSAC to refine
the matches. These four RANSAC runs have an almost

immediate convergence due to the high presence of in-
liers. Only loop chains whose all pair matches survive
to the four RANSACs are finally collected into the set

Ci,j ⊆ {C}.

2.2 Robust Pose Estimation

The relative pose Pi,j between fi and fj is estimated
in the second step of the SSLAM approach (see again

Fig. 2). The 3D point Xi,j corresponding to the match

pair (xl
i,x

r
i ) in keyframe fi can be estimated by triangu-

lation [14], since the intrinsic and extrinsic calibration
parameters of the system are known—in particular, we
use the iterative linear triangulation method described

in [13].

Let x̃l
j and x̃r

j be the projections of Xi,j onto frame
fj , according to the estimated relative pose Pi,j =

[Ri,j |ti,j ]. The distance

D(Pi,j) =
∑

Ci,j⊆C,d∈{l,r}
∥ x̃d

j − xd
j ∥ (5)

among the matches of the chain set Ci,j must be mini-

mized, in order for the estimate pose Pi,j to be consis-
tent with the data. Due to the presence of outliers in
Ci,j , a RANSAC test is run, where the numberDR(Pi,j)

of outliers chain matches over Ci,j exceeding a thresh-
old value δt is minimized so that pose Pi,j be consistent
with data:

DR(Pi,j) =
∑

Ci,j

Td

(
∥ x̃d

j − xd
j ∥> δt

)
. (6)

In Eq. 6, d ∈ {l, r}, and the indicator function Td(P (d))

is 1 if the predicate P (d) is true for all the admissible
values of d, and 0 otherwise. The final pose estimation
Pi,j between frames fi and fj is chosen as

Pi,j = argmin
Pi,j

DR(Pi,j) . (7)

At each iteration RANSAC estimates a candidate pose
Pi,j using a minimal set of matches, i.e., 3 matches,

in order to be robust to outliers [9]. The candidate
matches used to build the pose model Pi,j are sampled
from the set of candidate matches Ci,j . The pose Pi,j

is validated against the whole set of candidate matches

Ci,j according to (6) and the best model found so far
is retained. The process stops when the probability to
get a better model is below some user-defined threshold

value, and the final pose Pi,j is refined [16] on the set
G

Pi,j
of inlier matches where

GPi,j
=

{
C ∈ Ci,j |Td

(
∥ x̃d

j − xd
j ∥< δt

)}
(8)

for a generic pose Pi,j .

With respect to the pose estimation method de-
scribed above, SSLAM filters the frame sequence ac-
cording to the observation that the image resolution

provides a lower bound to the uncertainty of the po-
sition of the keypoints used in the matching process,
although subpixel precision is used. Matches are trian-

gulated to get the corresponding 3D point, and even-
tually estimate the relative pose between two tempo-
ral frames. Close frame matches have a low temporal

disparity and the associated 3D point position has a
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Left

Right

Time

Fig. 2: (Best viewed in color) Keypoint matches between the keyframe fi and the new frame fj must satisfy
the spatial constraint imposed by the epipolar rectification (yellow band) as well as the temporal flow restriction

(orange cone). Furthermore, the four matching points must form a loop chain C (dotted line). In the ideal case,
points xl

j , x
r
j in frame fj must coincide with the projections x̃l

j , x̃
r
j of Xi,j obtained by triangulation of xl

i, x
r
i in

fi in order for the chain C to be consistent with the pose Pi,j . However, due to data noise, in the real case it is

required that the distances ∥ x̃l
j − xl

j ∥ and ∥ x̃r
j − xr

j ∥ are minimal

Fig. 3: (Best viewed in color) The uncertainty of
matches in the image planes is lower bounded by the
image resolution (red) and it is propagated to the 3D

points. In order to estimate the 3D point Xi,j , by us-
ing close frames fi and fj , a low temporal disparity is
present in the image planes, and the 3D point location

Xi,j can assume a higher range Xi,j of values (dark
gray quadrilateral). In the case of distant frames fi and
fw, the possible locations Xi,w are more circumscribed

(blue quadrilateral), for the same resolution limits

high uncertainty with respect to distant frames, due
to the error propagation from the matches on the im-

age planes. Only points with sufficient displacement can
give information about both the translational and rota-
tional motion, as shown in Fig. 3. This idea is a straight

generalization of the well-known baseline length issues

related to the trade-off between reliable correspondence

matching and accurate point triangulation [14].

Exploiting this idea, SSLAM defines two subsets Fi,j

and F̄i,j of the set of chain matches Ci,j for fi and fj
which respectively include fixed and non-fixed points
with respect to the temporal flow, i.e.

Fi,j = {C ∈ Ci,j |Td(∥ xd
i − xd

j ∥≤ δf )} and, (9)

F̄i,j = Ci,j \ Fi,j , (10)

for a given threshold δf . In order for frame fj to be

accepted as new keyframe, the number of non-fixed
matches between frames fi and fj must be sufficient
according to a threshold δm:

1−
|Fi,j |

|Ci,j |
> δm . (11)

Indeed, if the estimation fails due to wrong matches
or high noisy data, which practically leads to a final

small RANSAC consensus set G
Pi,j

, the frame fj is
discarded and the next frame fj+1 is tested. We also
tried to verify if the use of only non-fixed matches as

input to RANSAC pose estimation can lead to better
results, but no improvements were found, so the pro-
portion of fixed and non-fixed points is only used for

keyframe selection. This means that, while all matches
are used to estimate the camera position, in presence
of enough non-fixed matches, a higher accuracy can be

achieved by limiting bad solutions. Note that for de-
termining fixed and non-fixed matches flow vectors are
considered, so that in the case of strong rotations and

weak translations, even if points are far, their higher
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flow would lead to better measurements and accuracy

with respect to the minimal measuring unit, i.e. a pixel.

Fig. 4: (Best viewed in color) Examples of successive

keyframes retained according to the temporal flow for
two different sequences of the KITTI dataset. The two
temporal keyframes involved are superimposed as for

anaglyphs, only images for the left cameras are shown.
Good fixed and unfixed matches are shown in blue and
light blue, respectively, while wrong correspondences

are reported in cyan

Examples of fixed point estimations are shown in
Fig. 4. With respect to the average flow threshold com-

monly employed by other systems such as [19], our
strategy is more stable and can handle better keyframe
drops. As an example, referring to Fig. 4, the average

flow in the top configuration is considerably higher than
that of the bottom one. Lowering the threshold, to ac-
cept the bottom frame, would also include very low

disparity frames (just consider to replace in the bot-
tom frame the unfixed light blue matches by twice the
matches with half disparity). In this sense, our measure

is more robust, so that both the frames shown in the
figure are retained as keyframes. In analogy, our frame
selection resembles RANSAC while the average flow is

close to the least-square approach.

Finally, we add a pose smoothing constraint be-
tween frames, so that the current relative pose estima-
tion Pi,j cannot abruptly vary from the previous Pz,i,

z < i < j. This is achieved by imposing that the relative
rotation around the origin between the two incremental
rotations Rz,i and Ri,j is bounded

arccos
(
uTRT

i,jRz,iu
)
< δθ1 (12)

where u = 1√
3
[1 1 1]T. Optionally, in the case of strong

constrained movement, like that of a car, a further con-

straint on the corresponding translation directions tz,i

and ti,j can be added

arccos

(
ti,j

Ttz,i

∥ ti,j ∥∥ tz,i ∥

)
< δθ2 (13)

This last constraint can also resolve issues in the case of

no camera movement or when moving objects crossing
the camera path cover the scene.

3 Experimental Evaluation

The KITTI vision benchmark suite [10], the New
College sequence [31] and the New Tsukuba stereo
dataset [21] were used to evaluate our SSLAM system.

Recently, the KITTI dataset has become a refer-
ence evaluation framework for VO systems. The dataset

provides sequences recorded from car driving sessions
on highways, rural areas and inside cities with vehicle
speed up to 80 km/h. The benchmark consists of 22

rectified stereo sequences from 500 m to 5 km, taken at
10 fps with a resolution of 1241× 376 pixels. Recorded
scenes are not static, as moving vehicles in opposite di-

rection or crossing the road are present. In order to train
the parameters of the methods, ground truth trajecto-
ries are available only for the first 11 sequences. Results

for the remaining sequences should be submitted online
to get a final ranking. Translation and rotation errors
normalized with respect to path length and speed are

computed in order to rank the methods.

The New College dataset is made up of a very long

sequence of 2.2 km for more than 50000 stereo rectified
frames taken inside the Oxford New College campus us-
ing a Segway. Data were recorded at 20 fps with a reso-

lution of 512× 384 pixels. Although no reliable ground
truth is available, the sequence consists of several differ-
ent loops which can be used to qualitatively compare

VO methods by visual inspection of estimated paths.
Unlike the KITTI dataset, data are recorded at a lower
speed and the camera movements are less constrained,

i.e., strong camera shakes are present.

The New Tsukuba dataset is a virtual sequence

that navigates into a laboratory reconstructed manu-
ally by computer graphics. Images with a resolution of
640 × 480 pixels are recorded at 30 fps for one minute

while accurate ground truth positions are registered and
provided to the users. The sequence is rendered with
four different illuminations from the most classical flu-

orescent to the more challenging flashlight and lamps—
see Fig. 5.

Unless otherwise specified, for SSLAM we set δf =
55 px, δm = 5%, δθ1 = 15◦ (see Sect. 2.2). About the
spatial and temporal constraints, the triplet (δr, δx, δy)

is set to (500, 300, 12) px in the case of the KITTI
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(a) (b)

(c) (d)

Fig. 5: Example frames of the New Tsukuba stereo

dataset: (a) fluorescent, (b) daylight, (c) flashlight, (d)
lamps

dataset and to (100, 100, 12) px for the New College and
New Tsukuba dataset, since these videos are taken at
lower resolutions and baselines. In the rest of the eval-

uation we will mainly compare SSLAM against VISO2-
S as it is the only method whose authors have kindly
replied to our request to provide us their full code. Note

that, for the sake of comparison, VISO2-S (δr, δx, δy)
values are chosen as (200, 200, 3) px (default values) for
KITTI and (100, 100, 3) in the New College dataset,

where the latter values perform better than the default
values. The translation constraint is δθ2 = 10◦ for the
KITTI dataset while it is not used for New College—

due to high camera shakes—and for the New Tsukuba
sequences.

Furthermore, we tested SSLAM using keypoints de-

tected at full and half resolution videos; in the lat-
ter case, the notation SSLAM† is used. In the case of
SSLAM† less accurate keypoints are found, with big-

ger (normalized) feature patches, more sensitive to fast
camera movements. Note also that more keypoints are
found in full resolution SSLAM implementation than

with SSLAM†. Nevertheless, different image resolutions
do not affect the other parameters of the methods since
keypoint positions are rescaled at the full resolution be-

fore the constrained matching in both cases.

3.1 SSLAM Parameter Analysis

We compared different versions of our SSLAM system,

corresponding to the successive improvements of the

pipeline proposed in Sect. 2, in particular we analysed

different versions of the more challenging SSLAM†. We
indicated by SSLAM†⋆ the first version which only in-
cludes the loop chain matching described in Sect. 2.1,

while the adaptive keyframe selection is incorporated
in the default SSLAM†.

In order to analyse the robustness and the effec-

tiveness of the proposed method, the SSLAM† sys-
tem was tested with a different number of RANSAC
iterations for the pose estimation. In particular, re-

sults of SSLAM† with 500, 15 (set as default) and 3
RANSAC iterations, and SSLAM†⋆ with 500 iterations
are presented, indicated respectively by SSLAM†/500,
SSLAM†/15, SSLAM†/3 and SSLAM†⋆/500.

Figure 6 shows the average translation and rotation

errors of the different SSLAM† variants for increasing
path length and speed, according to the first 11 se-
quences of the KITTI dataset [10]; we verified that sim-

ilar results hold in the case of full resolution SSLAM.

The chain loop matching scheme together with the
chosen keypoint detector and descriptor is robust even

for long paths, without bundle adjustment or loop
closure detection. SSLAM improves on the standard
pose estimation without keyframes selection, allowing

to track longer paths and confirming that the proposed
keyframe selection strategy is effective.

Moreover, results for SSLAM†/15 and SSLAM†/500
are equivalent, while SSLAM†/3 obtains inferior results
but similar to those obtained by SSLAM†⋆/500, giving
an evidence of the robustness of the proposed matching
selection strategy and pose estimation.

A further test aiming at investigating the fixed point
threshold δf used to accept a frame as keyframe was
also done. This is the parameter that mainly affects

the results, since selected keyframes decrease as δf in-
creases, while we verified that the computation is stable
with respect to the choice of the other parameters. Note

that increasing δm can be considered similar to require
a higher δf for a lower δm value. In particular, we run
SSLAM for different values of δf = 30, 50 (default),
80 px on KITTI and New College datasets. In the case

of δf = 30 slightly inaccurate paths are present with
respect to δf = 50 on both datasets, while for δf = 80
higher pose errors are found.

Figure 7 shows the behaviour of SSLAM for the
different values of δf on the New College sequence.

Clearly the default set δf = 50 px provides better re-
sults since even after a long path loops are correctly
closed. This results confirm the observation that avoid-

ing close keyframes improves the results, but this choice
must be balanced with the tracking capability of the
system. Moreover, if the system is unable to estimate

the pose due to a low number of matches and tracking
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Fig. 6: (Best viewed in color) Average error on the first 11 sequences of the KITTI dataset. Plots (a-b) refer to the
average translation and rotation error for increasing path length respectively, while plots (c-d) refer to increasing
speed

0 50 100 150 200
−80

−60

−40

−20

0

20

40

60

80

100

[m]

[m
]

(a)

0 50 100 150 200

−80

−60

−40

−20

0

20

40

60

80

100

[m]

[m
]

(b)

0 50 100 150 200

80

60

40

20

0

20

40

60

80

100

[m]

[m
]

(c)

Fig. 7: SSLAM estimated paths for the New College video sequence with δf = 30 px (a), δf = 50 px (b) and
δf = 80 px (c)

loss, a recovery method must be implemented as for any

other VO methods.

Table 1: Average number of frames between two con-
secutive keyframes and the corresponding standard de-

viations for different values of the threshold δf

δf 35 55 85 35 55 85

Average Std

KITTI 1 2 3 1 1 2
New College 5 10 32 8 13 39

Table 1 shows the average number of frames between
two consecutive keyframes and the corresponding stan-
dard deviations. Average keyframe rate depends upon

δf and δm but also on the camera speed and the video

frame rate. Slower camera speed and/or higher frame

rate imply a lower keyframe rate, but on the other hand
δf and δm depend also on the scene. According to Ta-
ble 1, the average keyframe rate is lower for the New

College dataset than for the KITTI dataset, due to their
different camera speeds. Furthermore, as it can be noted
in Fig. 8, the keyframe distribution is not uniform but

it is denser near camera turns and accelerations.

3.2 Evaluation on the KITTI dataset

We report hereafter the results on the KITTI odom-
etry benchmark for stereo methods only (more details

are available online [10]) excluding methods that rely on
laser data. Figure 9 shows the average translation and
rotation errors of the different methods for increasing

path length and speed. SSLAM and SSLAM†—ranked
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Fig. 8: (Best viewed in color) An example of keyframe
distribution along the Sequence 00 of the KITTI
dataset for SSLAM (default δf=50 px). At each esti-

mated camera position the number of keyframes that
fall inside a window of 10 frames centred at the camera
location is shown according to the colorbar gradation

among the first positions of the KITTI benchmark—

obtain respectively a mean translation error of 1.57%
and 2.14% w.r.t. the sequence length and a rotation
error of 0.0044 and 0.0059 deg/m. These rank place-

ments show the robustness of the proposed methodol-
ogy. Note however that the benchmark provides par-
tial results, since these error metrics cannot take into

account all the properties of a VO system. In partic-
ular, referring to Fig. 10 where two sample tracks of
the KITTI dataset are shown, it can be seen that while

both MFI and VoBa (respectively ranked in 1st and
4th positions) provide slightly better results than SS-
LAM in term of KITTI metrics, on long paths SSLAM†

(12th ranked) clearly improves on the 7th ranked eVO
method. This can also be observed in the relative trans-
lation error for an increasing path length in Fig. 9(a),

where SSLAM† plot remains stable when compared to
the increasing error of eVO. Additionally, evaluation on
the KITTI sequence shows that our approach is robust

in the case of non static scenes for common situations
with other objects traveling in other directions. In par-
ticular, the δθ2 constraint (see equation 13), allows to

“remember” the recent past camera tracking data, thus
avoiding to fall into wrong configurations in the case of
Sequence 07 around frame 700, where a huge truck oc-

cupying nearly the whole scene crosses the road while
the camera stands still.

Table 2 shows the input matches and the found
inliers in the RANSAC pose estimation by SSLAM,

SSLAM† and VISO2-S. As it can be noted, while
SSLAM† outputs a comparable number of initial
matches with VISO2-S, only 50% of these are inliers

for VISO2-S: This implies that our matching strategy
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Fig. 9: (Best viewed in color) Average error on the

KITTI benchmark. Plots (a-b) refer to the average
translation and rotation error for increasing path length
respectively, while plots (c-d) refer to increasing speed

is more robust. Note also that the spatial and temporal
flow constraints of VISO2-S are stricter, which would
lead theoretically to a higher number of matches since

the probability to make an accidental wrong match is
higher for SSLAM and SSLAM† (except for the epipo-
lar constraint δy, the other thresholds are about equal

to the minimal image size). Yet, as it can be seen from
Table 2, the opposite holds, in favour of the robustness
and stability of the proposed methodology.

3.3 Evaluation on the New College dataset

We tested SSLAM and SSLAM† versus VISO2-S not
only on the whole sequence but also on the two sub-

sequences corresponding to the small and large loops
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Fig. 10: (Best viewed in color) Trajectories on the se-
quences 13 (a) and 15 (b) of the KITTI dataset

Table 2: Average number of input matches before the
RANSAC pose estimation and final inlier ratios

KITTI New College

pts inl(%) pts inl(%)

SSLAM 766 98 780 99
SSLAM† 222 96 201 97
VISO2-S 245 50 156 84

present in the sequence. This is done to analyse the
behaviour of the methods at different starting points.
Figure 11 shows the obtained tracks. While VISO2-

S diverges as the sequence grows, both SSLAM and
SSLAM† maintain the correct paths, closing the loops,
without the need of bundle adjustment and loop closure

techniques. In particular, full resolution SSLAM works

slightly better than SSLAM†. This becomes noticeable

only at the end of the last part of the video sequence.

The New College video sequence seems more reliable

than the KITTI sequences, since as it can be seen from
Table 2, all methods achieve a higher number of tracked
keypoints but also inliers, maybe due to slower cam-

era movements. Anyway, VISO2-S still obtains a lower
number of matches and inliers with respect to SSLAM
and SSLAM†. Note also that the absence of the option-

ally translation constraint δθ2 in this sequence does not
affect the quality of the results.

3.4 Evaluation on the New Tsukuba dataset

In order to investigate further into the robustness
of our method, we tested SSLAM on the New
Tsukuba sequence for all the available illuminations.

In Fig. 12 estimated trajectories are reported together
with the ground truth: Even if slight misalignments
are present—especially in the first part of the flashlight

sequence—SSLAM tracks well the camera movements
for all illuminations. This is also clear by observing the
translation and rotation errors in Fig. 13—computed

using the KITTI metrics. For all illuminations, similar
performance is obtained.

As already done for the KITTI and New College se-
quences, also for the New Tsukuba dataset we tested

SSLAM on half-resolution images obtaining approxi-
mately the same errors reported for the full-resolution
tests. In Fig. 14 are shown trajectories of both the full

and half resolution input for the fluorescent sequence;
Similar results are obtained for all the other illumina-
tions.

It’s worth noting that the fluorescent sequence of

the New Tsukuba dataset was also used in [1] to eval-
uate the MFI method. Apart from a visual compari-
son between the trajectories estimated by MFI and SS-

LAM, from which no particular differences emerge, it
is not possible to make a quantitative evaluation, since
in [1] only relative accuracy improvements w.r.t. a base

method are reported.

3.5 Running Times

The SSLAM approach is implemented in C/C++ non-

optimized multithreaded code, for which the download
is available1. As it can be seen in Table 3, where the
average running times for a single frame are reported,

SSLAM scales with the resolution. By taking into ac-
count that only keyframes are required by SSLAM,

1
https://drive.google.com/open?id=0B_3Nh0OK9BclM0I5VC1jNndTSTA
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Fig. 11: (Best viewed in color) Estimated paths for
the New College video sequence. The plots (a), (b) and
(c) refer respectively to first subsequence (from frame

0 to frame 18400), to the last subsequence (from frame
18400 to frame 52479) and to the whole sequence. Note
that to achieve the best top view, each sequence was

rotated so that the displayed axes correspond to the
major directions of the autocorrelation matrix of the
point positions, i.e., to the two greatest eigenvectors
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Fig. 12: (Best viewed in color) Trajectories estimated
by SSLAM on the New Tsukuba sequence for all avail-
able illuminations
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Fig. 13: (Best viewed in color) Average translation (a)

and rotation (b) error for increasing path length for all
New Tsukuba sequence illuminations

real-time performance is achieved when the keyframe
computational time is less than fk/fv, where fk is the

keyframe rate and fv is the frame rate of the video se-
quences ([fk, fv] are respectively for the KITTI, New
College and New Tsukuba datasets equal to [2, 10],

[10, 20] and [5, 30]). This implies that the time to es-
timate a single keyframe must not exceed 0.20 s, 0.50 s
and 0.17 s respectively for the KITTI, New College and

New Tsukuba sequences. Although only SSLAM† can
run almost in real-time, code optimization using GPU
acceleration is planned to improve the running times.

Furthermore, we found that the main bottleneck of the
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Fig. 14: (Best viewed in color) Trajectories esti-
mated using full (Fluorescent, red track) and half
(Fluorescent†, blue track) resolution images of the New

Tsukuba fluorescent sequence

method is represented by the large size kernel convolu-
tions employed by the accurate feature detector. Under
this observation, further speed improvements should be

achieved from fast and approximate convolution algo-
rithms [12].

Table 3: Average computational time for a single frame
on a Intel-i7 3.50GHz CPU, 8 cores are used

SSLAM SSLAM†

KITTI 3.85 s 0.55 s
New College 0.95 s 0.20 s

New Tsukuba 0.87 s 0.24 s

4 Conclusion

In this paper a new stereo VO system was presented.

The approach achieves a low drift error even for long
paths, is local and it does not rely on loop closure
or bundle adjustment. A robust loop chain matching

scheme for tracking keypoints is provided, sided by a
frame discarding system to improve pose estimation.
According to the experimental results, dropping low

temporal disparity frames for discarding highly uncer-
tain models is an effective strategy to reduce error prop-
agation from matches, but it must be balanced to avoid

the loss of keypoint tracks across the video sequence.
Results validated on the KITTI, New College and New
Tsukuba datasets show the effectiveness of the system,

which is robust even with an extremely small number

of RANSAC iterations and able to work in various sce-

narios under different illuminations.

Future work will include an efficient optimized code

to improve real-time performance and possible integra-
tions with information from other sensors to improve
the accuracy of the localization. Our work mainly fo-

cuses on strengthening the data retrieving and filter-
ing phases, and relies on a well-know and simple pose
estimation method [11]. Further future work will be

addressed to extend and improve our VO pipeline by
including novel numerical optimization techniques ex-
ploiting long tracks based on Local Bundle Adjust-

ment [5,28] and tracking recovery mechanism to in-
crease the SSLAM reliability.
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