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Abstract

This paper discusses and compares the best and
most recent local descriptors, evaluating them on in-
creasingly complex image matching tasks, encompass-
ing planar and non-planar scenarios under severe view-
point changes. This evaluation, aimed at assessing de-
scriptor suitability for real-world applications, leverages
the concept of approximated overlap error as a means
to naturally extend to non-planar scenes the standard
metric used for planar scenes. According to the eval-
uation results, most descriptors exhibit a gradual per-
formance degradation in the transition from planar to
non-planar scenes. The best descriptors are those ca-
pable of capturing well not only the local image con-
text, but also the global scene structure. Data-driven
approaches are shown to have reached the matching ro-
bustness and accuracy of the best hand-crafted descrip-
tors.

1 Introduction

Local image descriptors constitute the basic layer of
almost all computer vision applications dealing with
point correspondences among several images, encom-
passing object detection [16], image stitching [7], 3D
reconstruction [27] and visual odometry [12]. This has
ensured that the topic remained well alive through the
years, up to the recent advances on both hand-crafted
and data-driven descriptors. The latter, which lever-
age deep learning progress, availability of big data and
modern hardware capabilities, are yielding particularly
promising results.

Several factors influencing descriptor performance
must be taken into account for developing practical
applications. These factors include the nature of scene
content, the image transformations involved, the com-
putational constraints, the requirements in matching
accuracy and robustness. Concurrently with the evo-
lution of descriptor design, better evaluation bench-
marks that can expose both potential strengths and
weaknesses of descriptors are called for. In particu-
lar, adaptability to non-planar scene content and rel-
evant viewpoint changes are the main aspects to con-
sider when defining an effective descriptor evaluation
benchmark, as they reflect the most general real-world
environment.

Well-consolidated benchmarks exist for the eval-
uation of planar scenes, from the standard Oxford
benchmark [18, 20] to the more recent HPatches [2].
Here, the overlap error between local descriptor patches
and their re-projections is used as the error metric,
while ground-truth (GT) information consists just in
the homography transformation between the input im-
ages, which can be estimated in a very accurate and
easy way. Nevertheless, evaluation on planar scenes
provides only a limited insight into overall descrip-
tor properties. In order to overcome this limitation,
benchmarks exploiting either directly or indirectly non-
planar environments have been devised. In the former
case, GT is directly estimated (a) using stereo match-
ing [14] or Structure-from-Motion [25], (b) through
complex sensor-based system setups [10, 28], or (c) ac-
cording to some approximation scheme [5, 23]. On the
other hand, indirect evaluation of local image descrip-
tors is done (d) by checking the correctness of the out-
put for a given specific application task, such as object
retrieval [11] or visual odometry [6]. All these solu-
tions have some drawbacks: GT may not be available
for some image region (a,b), GT can be erroneously
estimated (a,c,d), or GT can be biased towards the
considered application (a,d). For example, SIFT was
found to give the best results on evaluations based on
Structure-from-Motion pipelines, that are usually built
and optimized over SIFT itself [25].

In this paper, a comparative evaluation of the best
recent local descriptors is carried out, focusing on im-
age matching tasks. Test images include both planar
and non-planar scenes, the latter being particularly
effective at assessing descriptor suitability for practi-
cal applications. Descriptor performance with planar
scenes is evaluated in terms of overlap error. For non-
planar scenes, the Approximated Overlap error (AO)
metric introduced in [5] was chosen for two main rea-
sons. First, AO takes into account the whole local de-
scriptor patch, thus representing a natural extension
of the overlap error to the more complex non-planar
case. Second, AO was shown to give a very low false
positive rate in GT estimation, thereby not affecting
descriptor ranking order, and to avoid the bias issues
experimented with recent setups.

The rest of the paper is organized as follows. Recent
state-of-the-art local image descriptors are reviewed in
Sec. 2. The planar and non-planar evaluation setups
and datasets are described in Secs. 3 and 4, respec-



tively. Comparative experimental results are discussed
in Sec. 5. Finally, conclusions and future work are out-
lined in Sec. 6.

2 Recent State-of-the-Art Local Descriptors

Nowadays, there are mainly two ways of classifying
local image descriptors. The first way is to consider
whether the descriptor uses a priori data knowledge
and is trained according to some machine learning ap-
proach. If this is the case, the descriptor is termed
data-driven, otherwise it is termed hand-crafted. The
second way is to classify descriptors by the data type
used to represent their vector elements. Specifically, if
a single bit per element is used, the descriptor is re-
ferred to as binary, and non-binary otherwise. Binary
descriptors are usually less robust, yet faster and more
compact than non-binary ones.

Scale-Invariant Feature Transform (SIFT) [16] is
a quite popular and valid hand-crafted, non-binary
descriptor, generally used as baseline for benchmark
evaluations. SIFT is obtained as the concatenation
of the Gaussian-weighted gradient histograms associ-
ated to the regions into which the keypoint patch is
divided, after being rotated towards the dominant gra-
dient orientation. In the attempt to improve its ro-
bustness, several SIFT extensions have been proposed
over the years. Among these, RootSIFT [1] and
the doubled shifting Gradient Local Orientation His-
togram [3] , in both its non-binary (sGLOH2) and
binary (BisGLOH2) versions, are considered in the
proposed evaluation. RootSIFT improves SIFT by em-
ploying the Hellinger distance instead of the Euclidean
distance. sGLOH2 and BisGLOH2 are more effective
at handling patch rotations.

Other hand-crafted descriptors considered for
this evaluation are Local Intensity Order Pattern
(LIOP) [31], employing intensity order pooling and
histograms computed on the relative order of neighbor
pixels to achieve rotation invariance, and the Multiple-
Kernel Local-Patch Descriptor (MKD) [24], using al-
ternative kernels for defining histograms. For both
descriptors, optimized data-driven versions exist, ex-
ploiting among others Principal Component Analysis
(PCA) to achieve better matching results while reduc-
ing the associated vector dimensions. These descrip-
tors, denoted respectively as Mixed Intensity Order
Pattern (MIOP) [31] and MKDW , will also be taken
into account.

Binary data-driven descriptors have also been pro-
posed. In particular, Receptive Field Descriptor
(RFD) [9] thresholds regions of the patch gradient map,
where threshold values, positions and sizes of the patch
regions are learned from training data. Two different
RFDs have been included in the evaluation, namely
RFDR and RFDG, making use of rectangular and
Gaussian regions, respectively.

Deep descriptors are also considered for the compar-
ative evaluation. This kind of data-driven descriptors
is built upon Convolutional Neural Network (CNN) ar-
chitectures, generally exploiting triplet loss and hard
negative mining for optimization at the training stage.
DeepDesc [26], L2-Net [29] and HardNet++ [21]
have been included together with some variants. In
particular, BiL2-Net and L2-NetCS denote respec-
tively the binary and center-symmetric versions of L2-
Net [29]. HardNetPS [22] is be evaluated too. It em-
ploys an alternative massive patch dataset for train-
ing, aiming at overcoming the lack of generalization
ability as consequence of data insufficiency, common
to all learning-based approaches. The very recent
GeoDesc [17], also in its quantized form here denoted
as GeoDescQ, is also included in the comparison. Dif-
ferently from the previous approaches, this descriptor
also exploits geometric information for network train-
ing.

3 Planar evaluation setup

The setup follows the guidelines described in [19]
with slight changes. More in detail, given two im-
ages I1 and I2 of the same planar scene, keypoints are
extracted using the HarrisZ detector [4]. Descriptors
are then computed from the corresponding normalized
patches, matched in a pairwise way, and sorted accord-
ing to the Nearest Neighbor Ratio (NNR) [16]. The GT
homography H2→1 relates points x1 ∈ I1 and x2 ∈ I2
so that x1 = H2→1x2 in homogeneous coordinates.
The overlap error between two generic regions A and
B of the same image is defined as

ǫ(A,B) = 1−
A ∩B

A ∪B
(1)

A match is considered correct if ǫ(E1, E2→1) ≤ t, where
t = 0.5 is a given threshold, E1 ∈ I1 and E2 ∈ I2 are
the two elliptical patches corresponding respectively to
the matching pair elements, and E2→1 is the projec-
tion of E2 onto I1 through H2→1. Notice that, differ-
ently from the original implementation in [19], where
the overlap error is computed by finite approximations,
the exact analytical solution described in [15] is used
in this work for the computation of the overlap error.

Images from the Oxford [18] and Viewpoint [32]
datasets were used. GT homographies are provided as
part of the datasets. The Oxford dataset [18] contains
8 sequences of 6 images. Each sequence shows a planar
scene undergoing one specific transformation among
the following: Scale plus rotation, image blur, illumina-
tion, JPEG compression and viewpoint changes. The
Viewpoint dataset contains 5 different sequences of 6
images with various viewpoint changes. Image pairs
are generated by setting the first image of each se-
quence as reference I1, and using one of the remaining 5
images as I2, for a total of (8+5)×(6−1) = 13×5 = 65
image pairs.



Figure 1. Sample image pairs from the (top row)
planar, (middle row) viewpoint only, and (bottom
row) non-planar datasets used in the evaluation.

Results are compared in terms of mean Average Pre-
cision (mAP), computed as in [8]. The average mAP
over all the planar image pairs is considered. In ad-
dition, results with the subset obtained by selecting
only the image pairs subjected to viewpoint changes
(referred to as “viewpoint only,” containing 7× 5 = 35
pairs) are reported. This subset represents the most
relevant and challenging kind of image distortion. Two
sample image pairs for the planar setup are shown in
the first two rows of Fig. 1.

4 Non-Planar evaluation setup

Non-planar evaluation follows the same approach
adopted for the planar case, only replacing the overlap
error with the Approximated Overlap error (AO) [5].
AO extends to surfaces the linear overlap error intro-
duced in [13], defined hereafter for completeness. As
shown in Fig. 2, any tangency relation between the
epipole and a given ellipse is preserved under per-
spective projection (blue). The linear overlap error
is defined as the ratio between the small (light blue)
and the wider (red) segments, both lying on the line
through the points t′

1
and t′′

1
where the tangents from

the epipole e1 meet the ellipse E1. The epipolar lines
l′
2→1

and l′′
2→1

in I1 (yellow) correspond to the points
t′
2
and t′′

2
in I2 where the tangents from the epipole e2

meet the ellipse E2.
AO extends the linear overlap error by observing

that, in addition to epipoles, the correspondences em-

Figure 2. Linear overlap error construction (best
viewed in color).

Figure 3. AO construction (best viewed in color).

ployed for computing the GT fundamental matrix are
usually available. Given two of such correspondences
(see Fig. 3), the associated four tangent points on
the ellipse E1 (orange) define the inscribed P1 (light
blue) and circumscribed Q1 (dark blue) quadrilater-
als. Analogously to the case of the linear overlap error,
the quadrilaterals P2→1 (light green) and Q2→1 (dark
green) can be constructed through the epipolar map-
ping from points in I2 to lines in I1. AO is defined
as

ε =
ǫ(P1, P2→1) + ǫ(Q1, Q2→1)

2
(2)

under the assumption that the scene can be approxi-
mated by piecewise planar patches. For further com-
putational details see [5].

If ellipse E1 correctly matches E2, but not E
′

2
, a false

positive may nevertheless arise when E2 and E′

2
share,

either exactly or approximately, the same tangent lines
through the epipole e1. Even if AO has been shown to
give a very low false positive rate (less than 5%), which
does not affect descriptor ranking in unsupervised eval-
uations [5], hereafter a heuristic is introduced that fur-
ther decreases false positive matches. Let I1 and I2 be
m × n pixels images, and c1 and c2 the centers of E1

and E2, with flow length ‖ c1 − c2 ‖. Consider the set
F of flow lengths relative to all the ellipses in I1 whose
centers are inside a radius of min(m,n)/15 from c1. A
match is discarded if

‖ c1 − c2 ‖> µ+ 2.5σ (3)

where µ and σ are the median and Median Absolute



Figure 4. Flow vectors of the retained (green)
and discarded (red) matches using the proposed
heuristic for the sample non-planar image pair of
Fig. 1 (best viewed in color).

Deviation (MAD) over F , respectively. The same pro-
cess is repeated by working on I2 and switching the
roles of E1 and E2. An example of wrong matches
discarded by the proposed heuristic is shown in Fig. 4.

For the non-planar evaluation, experimental results
were obtained with the dataset introduced in [3]. This
dataset is made up of 42 different image pairs of non-
planar scenes exhibiting various degrees of viewpoint
changes (a sample image pair is shown in the last row
of Fig. 1). GT fundamental matrices for epipolar trans-
fer and correspondences for constructing approximated
quadrilaterals are provided by the authors. As for the
planar case, the AO threshold is set to t = 0.5 and
results are reported in terms of average mAP.

5 Results

Results for all of the state-of-the-art descriptors re-
ferred to in Sec. 2, some of which are quite recent, are
reported in Table 1. For each descriptor under test, the
table also lists the following characteristics: (1) match-
ing distance (L1, L2, Hamming, or dot product), (2)
class (hand-crafted or data-driven), (3) rotational in-
variance, (4) vector dimension and data type, (5) bib-
liographic reference. The choice of the L1 distance for
SIFT, RootSIFT and LIOP may appear unusual, as
these descriptors are typically matched according to
the L2 distance. Nevertheless, our experiments con-
firmed the result found in [3] that these hand-crafted
descriptors perform better with L1 than with L2. For
descriptors that are not rotationally invariant, local im-
age patches were rotated according to the SIFT dom-
inant gradient orientation using the VLFeat [30] im-
plementation. The freely available code from [3] was
used for the computation of the overlap error and AO.
For all descriptors, with the exception of SIFT and
RootSIFT employing the VLFeat implementation, the

code made available by their authors was used. No-
tice also that for the sake of simplicity, Table 1 refers
to sGOr2h⋆ and BisGOr2h⋆ matching strategies [3] as
sGLOH2 and BisGLOH2, respectively.

According to the results, mAP decreases in the tran-
sition from planar through viewpoint to non-planar
scenes, and are well aligned with those reported for the
HPatches dataset, on the easy, hard and tough setups,
respectively [17].

GeoDesc and GeoDescQ achieve the best results for
any setup, closely followed by sGLOH2 and its bina-
rized counterpart BisGLOH2, with HardNet++ and
HardNetPS ranked after them. Comparing GeoDesc
against GeodescQ, quantization does not seem to af-
fect the matching robustness, while it provides a faster
and more compact descriptor. HardNet++ performs
better than HardNetPS for non-planar scenes, while
the opposite happens in the case of planar scenes, un-
derlining the strict and critical dependency of deep de-
scriptors from training data. Among the evaluated de-
scriptors, only GeoDesc, GeodescQ, sGLOH2 and Bis-
GLOH2 exploit the spatial geometric structure in the
image. Being data-driven, GeoDesc is learned a priori
according to this kind of information, while sGLOH2
and BisGLOH2 use it explicitly at runtime time thanks
to their matching strategies, that behave like statisti-
cal filters on the data. Negative mining techniques,
employed by deep descriptors, also seem to be able to
implicitly extract the image statistical context.

Concerning the remaining descriptors, LIOP and
MIOP boost their performance in the planar case,
while results become comparable to those provided by
RFDR, RFDG, SIFT, RootSIFT, L2-Net, MKD and
MKDW in the non-planar case. L2-NetCS and BiL2-
NetCS exhibit the opposite behavior. Analogously,
DeepDesc behaves nearly as the worst in the planar
case, while its results are well aligned with the oth-
ers in the non-planar case and when only viewpoint
transformations are considered. This can be again
due to the training dataset and approach employed by
DeepDesc. As for the comparison of LIOP and MKD
against MIOP and MKDW , respectively, PCA provides
only little improvements in terms of matching, but can
greatly reduce descriptor dimensions, thus improving
efficiency. BiL2-Net is the one with the worst per-
formance in this evaluation. However, considering its
strictly limited descriptor vector length, BiL2-NetCS

can be useful for applications dealing with non-complex
images and requiring fast matching.

The proposed evaluation does not report any analy-
sis about running times, since these are strongly depen-
dent on the hardware and software implementations
(e.g. CPU, SIMD, GPU). However, descriptor vector
total byte length, that can be derived by descriptor
dimension and data type, is in general sufficient to
predict computational requirements at matching time.
According to this assumption, binary descriptors are
faster than the others, while float type descriptors



are the slowest on optimized implementations. No-
tice, however, that this discussion does not hold for the
sGLOH2 and BisGLOH2 descriptors, whose matching
strategies are different from the others and very time
consuming [3].

6 Conclusion and Future Work

This paper compared recent state-of-the-art local
image descriptors for real-world matching applications,
thanks to the concept of Approximated Overlap error
as a means to naturally extend the analysis from planar
to non-planar scenarios, without introducing biases as
it happened with other recent evaluations.

Overall, most descriptors exhibit a gradual per-
formance degradation in the transition from planar,
through viewpoint, to non-planar scenes. The best de-
scriptors are those capable of capturing well not only
the local image context, but also the global scene struc-
ture. Indeed, it seems that descriptors are now very
close to reach their allowable discriminability power
when considered alone. Injecting global scene knowl-
edge, either a priori or at matching time, and either
implicitly or explicitly, can be the next step to look for
better solutions in the field. According to the evalu-
ation results, data-driven approaches are so matured
that they have reached and even surpassed the match-
ing robustness and accuracy of the best hand-crafted
descriptors. Nevertheless, that of training data still re-
mains a crucial aspect to be considered, in particular
when descriptors have to be designed for very specific
application domains.

Future work will include an expansion of the non-
planar dataset, and the analysis of further descriptor
properties omitted in this paper, such as implementa-
tion issues and computational times.
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[1] R. Arandjelović and A. Zisserman. Three things
everyone should know to improve object retrieval.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pages 2911–2918, 2012.

[2] V. Balntas, K. Lenc, A. Vedaldi, and K. Miko-
lajczyk. HPatches: A benchmark and evaluation
of handcrafted and learned local descriptors. In
IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3852–3861, 2017.

[3] F. Bellavia and C. Colombo. Rethinking the
sGLOH descriptor. IEEE Transactions on Pattern

Table 1. Evaluation results

mAP (%)
dim type

SIFT � 63.93 47.48 37.58 128 uchar [16]
RootSIFT � 63.71 49.09 38.88 128 float [1]

LIOP � � 74.11 55.22 39.52 144 uchar [31]L
1

sGLOH2 � � 75.64 63.51 50.68 256 uchar [3]

MIOP � 76.36 57.02 40.54 128 float [31]
DeepDesc 55.38 47.84 38.35 128 float [26]

L2-Net 59.91 48.62 43.00 128 float [29]
L2-NetCS 67.00 54.64 48.12 256 float [29]

HardNet++ 70.73 58.37 47.54 128 float [21]
HardNetPS 73.94 59.86 45.77 128 float [22]
GeoDesc 78.75 65.10 51.51 128 float [17]

L
2

GeoDescQ 78.78 65.03 51.53 128 uchar [17]

RFDR 68.26 54.13 38.48 293 bit [9]
RFDG 68.77 55.63 40.25 406 bit [9]

BiL2-Net 48.70 36.58 34.33 128 bit [29]
BiL2-NetCS 61.42 49.35 43.31 256 bit [29]

H

BisGLOH2 � � 74.26 61.49 49.31 1152 bit [3]

MKD 62.65 48.89 40.67 238 float [24]

∗

MKDW � 62.84 48.64 40.10 128 float [24]

hand-crafted rotationally invariant refs ∗ dot product

planar viewpoint only non-planar H Hamming distance

Analysis and Machine Intelligence, 40(4):931–944,
2018.

[4] F. Bellavia, D. Tegolo, and C. Valenti. Improving
Harris corner selection strategy. IET Computer
Vision, 5(2):86–96, 2011.

[5] F. Bellavia, C. Valenti, C. A. Lupascu, and
D. Tegolo. Approximated overlap error for the
evaluation of feature descriptors on 3D scenes.
In Proceedings of the International Conference on
Image Analysis and Processing (ICIAP), pages
270–279, 2013.

[6] J. Bian, L. Zhang, Y. Liu, W. Y. Lin, M. M.
Cheng, and I. D. Reid. MatchBench: An eval-
uation of feature matchers. In arXiv, 2018.

[7] M. Brown and D. G. Lowe. Automatic panoramic
image stitching using invariant features. Interna-
tional Journal of Computer Vision, 74(1):59–73,
Aug 2007.

[8] M. Everingham, L. Van Gool, C.K.I. Williams,
J. Winn, and A. Zisserman. The pascal visual
object classes (VOC) challenge. volume 88, pages
303–338, 2010.

[9] B. Fan, Q. Kong, T. Trzcinski, Z. Wang, C. Pan,
and P. Fua. Receptive fields selection for binary
feature description. IEEE Transactions on Image
Processing, 26(6):2583–2595, 2014.

[10] B. Fan, Q. Kong, X. Wang, Z. Wang, S. Xiang,
C. Pan, and P. Fua. A performance evaluation of



local features for image based 3D reconstruction.
In arXiv, 2018.

[11] B. Fan, F. Wu, and Z. Hu. Rotationally invariant
descriptors using intensity order pooling. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 34(10):2031–2045, 2012.

[12] M. Fanfani, F. Bellavia, and C. Colombo. Accu-
rate keyframe selection and keypoint tracking for
robust visual odometry. Machine Vision and Ap-
plications, 27(6):833–844, 2016.

[13] P. Forssén and D.G. Lowe. Shape descriptors for
maximally stable extremal regions. In Proceedings
of the International Conference on Computer Vi-
sion, pages 1–8, 2007.

[14] F. Fraundorfer and H. Bischof. A novel per-
formance evaluation method of local detectors
on non-planar scenes. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern
Recognition (CVPR), pages 33–33, 2005.

[15] G. B. Hughes and M Chraibi. Calculating ellipse
overlap areas. Computing and Visualization in
Science, 15(5):291–301, 2012.

[16] D.G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[17] Z. Luo, T. Shen, L. Zhou, S. Zhu, R. Zhang,
Y. Yao, T. Fang, and L. Quan. Geodesc: Learn-
ing local descriptors by integrating geometry con-
straints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018.

[18] K. Mikolajczyk and C. Schmid. A performance
evaluation of local descriptors. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, 27(10):1615–1630, 2005.

[19] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zis-
serman, J. Matas, F. Schaffalitzky, T. Kadir, and
L. Van Gool. A comparison of affine region detec-
tors. International Journal of Computer Vision,
65(1-2):43–72, 2005.

[20] O. Miksik and K. Mikolajczyk. Evaluation of local
detectors and descriptors for fast feature match-
ing. In Proceedings of the International Confer-
ence on Pattern Recognition (ICPR), pages 2681–
2684, 2012.

[21] A. Mishchuk, D. Mishkin, F. Radenovic, and
J. Matas. Working hard to know your neigh-
bor’s margins: Local descriptor learning loss. In
Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Informa-
tion Processing Systems (NIPS), pages 4829–4840,
2017.

[22] R. Mitra, N. Doiphode, U. Gautam, S. Narayan,
S. Ahmed, S. Chandran, and A. Jain. A large
dataset for improving patch matching. In arXiv,
2018.

[23] P. Moreels and P. Perona. Evaluation of fea-
tures detectors and descriptors based on 3D ob-
jects. International Journal of Computer Vision,
73(3):263–284, 2007.

[24] A. Mukundan, G. Tolias, and O. Chum. Multiple-
kernel local-patch descriptor. In British Machine
Vision Conference (BMVC), 2017.

[25] J. L. Schönberger, H. Hardmeier, T. Sattler, and
M. Pollefeys. Comparative evaluation of hand-
crafted and learned local features. In IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[26] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos,
P. Fua, and F. Moreno-Noguer. Discriminative
learning of deep convolutional feature point de-
scriptors. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV),
2015.

[27] N. Snavely, S.M. Seitz, and R. Szeliski. Modeling
the world from internet photo collections. Interna-
tional Journal of Computer Vision, 80(2):189–210,
2008.

[28] C. Strecha, W. von Hansen, L. J. Van Gool,
P. Fua, and U. Thoennessen. On benchmarking
camera calibration and multi-view stereo for high
resolution imagery. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
2008.

[29] Y. Tian, B. Fan, and F. Wu. L2-Net: deep learn-
ing of discriminative patch descriptor in euclidean
space. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6128–
6136, 2017.

[30] A. Vedaldi and B. Fulkerson. VLFeat: An open
and portable library of computer vision algo-
rithms. http://www.vlfeat.org/, 2008.

[31] Z. Wang, B. Fan, G. Wang, and F. Wu. Ex-
ploring local and overall ordinal information for
robust feature description. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
38(11):2198–2211, 2016.

[32] K.M. Yi, Y. Verdie, P. Fua, and V. Lepetit. Learn-
ing to assign orientations to feature points. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–
8, 2016.


