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Abstract

A computer vision based approach for human±computer interaction through head movements is presented and

evaluated in a non-immersive virtual reality context. Once intercepted and tracked in real-time using a piecewise a�ne

camera model and a�ne-deformable eye contours, user head displacements are estimated and remapped onto the

tridimensional graphic environment according to a natural interface metaphor. Both the real-time performance of the

tracker and the improved head parameter estimation accuracy ± as compared to the one obtainable using globally a�ne

camera models ± encourage the use of this approach to support diverse advanced interaction scenarios and applica-

tions. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last two decades, human±computer in-
terfaces have gradually evolved to provide sys-
tems with natural interaction modalities inspired
from human behavior in the real world. The re-
cent advent of advanced interface paradigms and
environments such as virtual and augmented re-
ality has been made possible thanks to new in-
teraction devices, such as head-mounted displays,
datagloves, etc., capable of supporting more and
more sophisticated dialogue modalities and user
needs [surveys can be found e.g. in (Nielsen,
1993; Myers, 1998)]. Despite the recent research
and technology e�orts, advanced human±com-

puter interaction devices still su�er of a number
of problems which, if not solved, are likely to
hamper the widespread di�usion of the next
generation computer interfaces. Two main prob-
lems with current devices are intrusiveness (e.g.
wearing a virtual reality helmet is not exactly
fun) and expensiveness (related to the need of
special hardware and high computational over-
load).

Being an intrinsically non-intrusive technology,
computer vision is becoming more and more ap-
pealing as a human±machine interaction technol-
ogy [useful reviews can be found in (Pentland,
1996; Crowley, 1997)]. Indeed, in the last few
years, a number of computer vision algorithms
and techniques have appeared for localizing,
tracking and recognizing user body parts such as
head, arms, hands and facial features such as lips
and eyes even with an inexpensive camera ± a
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device which will no doubt be part of the standard
equipment of any PC with multimedia facilities in
the near future. Computer vision contributions to
human±computer interaction are twofold. On the
side of interaction semantics, recognition of human
gestures (see e.g. (Pavlovic et al., 1997)) and ex-
pressions (as in (Essa and Pentland, 1997)) can be
used to develop natural human±machine interac-
tion languages, while face recognition (for a recent
contribution, see (Lam and Yan, 1998)) can be
e�ective for person authentication and surveillance
purposes. On the side of interaction geometry, lo-
calization and tracking of body features can be
used to develop special pointers to be used in the
place of 3D mice, joysticks, etc. Azarbayejani et al.
(1993) proposed a Kalman ®lter based head
tracking technique for virtual holography and
teleconferencing; Cipolla and Hollinghurst (1996)
developed a system for pointing in a tridimen-
sional (3D) robot workspace using a�ne stereo
vision and hand tracking; in (Colombo and Del
Bimbo, 1997), a technique was presented to infer
the computer screen location currently observed
by the user by the measurement of image eye pupil
displacements.

While several computer vision techniques have
been proposed with a possible application to hu-
man±computer interaction, actually only a few of
these techniques were integrated into a complete
system (for example, in (Gee and Cipolla, 1996),
an e�ective method is proposed to determine head
orientation in real-time with an uncalibrated
camera, but no application exploiting this method
is presented). In other cases, the computer vision
techniques, although often remarkably accurate,
are simply too slow for a satisfactory interaction:
the overall system would simply have no time but
for the required vision computations (this happens
e.g. with the eye localization method presented by
Yuille and Hallinan (1992) when one attempts to
use it for real-time eye tracking with a PC). In this
respect, computer vision techniques speci®cally
developed for hard real-time robotic applications
are certainly adequate for interaction applications.
Such techniques often rely on simpli®ed linear
models of camera±world interaction in order to
dramatically reduce the burden of visual compu-
tations (see e.g. the recent works of (Cipolla and

Hollinghurst, 1997) and (Allotta and Colombo,
1999).

In this paper, we present a computer vision
based approach to interact with 3D graphic envi-
ronments through head displacements. The mo-
dality of interaction can be e�ective for both
disabled users a�ected by severe limb motor pa-
thologies and general users requiring to commu-
nicate in a non-intrusive way with the computer.
The operating context is composed by a camera
placed in front of the user and an on-screen envi-
ronment featuring a 3D realistic graphic scene. A
piecewise a�ne camera model is introduced, al-
lowing the user's head displacements to be esti-
mated in real-time from the comparative analysis
of the a�ne deformations of the left and right eye
contours in the image. The estimated head pa-
rameters are mapped onto commands for 3D dis-
play, and rendered via graphical synthesis
(remapping) according to a drag and click inter-
face metaphor. Although integrated in a non-im-
mersive virtual reality context, the proposed
framework can be easily adapted to other tasks
and scenarios, so as to support interaction in
multimedia, videoconferencing, telepresence, us-
ability monitoring, augmented reality, interactive
3D video and similar environments.

2. Models

Relative geometry and image projection. Let a, b
and c denote respectively the local coordinate
frames associated to screen, user's head and cam-
era. Head movements in space can be described by
six independent degrees of freedom (DOF), three
for position and three for orientation, measured in
some ®xed reference frame q. The head DOFs are
encoded in the linear transformation between the
coordinate representations of a generic point in
space p in the b-frame (bp) and in the q-frame (qp).
Using homogeneous coordinates for p, such a
transformation can be compactly described by a
4� 4 matrix q

bT s.t. �qpT1�T � q
bT�bpT1�T. As chan-

ges of frame are composed linearly, the b 7!q
transformation can be reconstructed from the
composition of the b 7!c and c 7!q transforma-
tions, as q

bT � q
c Tc

bT. The c 7!q transformation is
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time-independent, at least as long as the camera is
®xed, while the b 7!c transformation depends on
the current position of the user's head.

The six DOF describing user±camera relative
geometry are expressed by a translation 3-vector c

bt
and a 3� 3 rotation matrix c

bR�s; r;/�, which is
completely de®ned by the three angles s (tilt), r
(slant) and / (orientation). The slant r 2 �0; p

2
� is

the angle between the face and the image planes;
this vanishes identically if the two planes are par-
allel. The tilt angle s 2 �0; 2p� gives instead the
image direction of maximum depth decrease (see
Fig. 1). Perspective projection of a face point
cp � cX cY cZ� �T onto the camera plane point
x � � x y �T is given by x � k

cZ
cX cY� �T, where k

denotes the focal length of the camera.
Perspective projection can be approximated by

an a�ne map provided that the depth variations
for an object of interest in the scene are much
smaller than the average depth (see e.g. (Mundy
and Zisserman, 1992)). In our speci®c scenario, we
observe that the depth of the points of a single eye
is virtually constant, and equal to eye centroid
depth cZE. Hence, we get x � HE

cX cY� � � hE,
where (ca�: cosa, sa�: sina)

HE � jE

cscrc/ ÿ sss/ cscrs/ � ssc/

sscrc/ � css/ sscrs/ ÿ csc/

" #
;

hE � jE

cXE

cYE

" #
;

�1�

being jE � k
cZE

. Notice that linearizing perspective
produces a pose ambiguity, i.e. there are two dis-
tinct object poses sharing the same visual appear-
ance. In our case, an ambiguity exists whenever
r 6� 0, as the angle triplets �s; r;/� and
�s� p; r;/� p� yield exactly the same HE. The
ambiguity problem must be solved in order to
estimate head pose from a single a�ne projection
map (see Appendix A).

In this work, we introduce a piecewise a�ne
camera model, in which any view of user's face
is not represented by a single a�ne map, but by
two distinct a�ne maps, namely, �HL; hL� and
�HR; hR�, related respectively to the left and right
eyes. According to such a model, the imaging
projection can be approximated by an a�ne map
for the two eyes taken individually, but not when
they are considered together. As it will be clear in
the following sections, such a model (1) allows to
approximate perspective more accurately than the
single a�ne map model, (2) still permits the use of
fast a�ne template tracking techniques, and
(3) does not require any disambiguation strategy to
compute the pose of the face.

Head tracking. The user's eyes are good face
features to track in the image for the recovery of
head displacements from visual appearance chan-
ges. Indeed, the external contour of each eye, being
®xed to the head, can be related to head dis-
placements. Image measurements for head track-
ing are obtained by coupling an elastic template
with raw image data. At startup, the template is
automatically initialized in the image, in order to
match the location and shape of the user's eyes.
For each of the two eyes, a reference template is
thus produced. The external eye reference template
is made of two semi-ellipses sharing their major
axis, depending on six parameters (e1±e6 in Fig. 2),
namely the common major axis (e1), the two minor

Fig. 1. De®nition of head orientation parameters. Fig. 2. Reference template for L and R eyes.
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axes (e2, e3), the ocular center's image coordinates
(e4; e5), and the common orientation (e6). At run-
time, a visual tracker is started, which keeps itself
locked onto the current external eyes' visual ap-
pearance. The current tracker's shape and location
provide the time-varying information needed to
measure user action and use it for human±com-
puter interaction.

Let us assume that the reference frame q is the
b-frame at initialization time (t � 0), i.e. q � b�0�.
Assume also that r�0� � s�0� � /�0� � 0, i.e. the
reference and camera planes are parallel, and have
mutually parallel X -axes. Then, by Eq. (1), the
reference template models a frontoparallel view of
each eye, translated by hE�0�, and undergoing
scaling and specular re¯ection w.r.t. the face pla-
ne's content by HE�0� � jE�0�diag�1;ÿ1�. It is not
di�cult to show that the following a�ne rela-
tionship exists between a generic eye view x�t�
and the reference eye view x�0�: x�t� � xE�t��
LE�t��x�0� ÿ xE�0��, where

LE�t� � HE�t�Hÿ1
E �0�; �2�

and where xE�t� � hE�t� is the projection of the
ocular center cpE�t�, which equals the centroid of
the eye projection. Fixing b0 � b�0� as the refer-
ence frame allows us also to describe the relative
position between the current frame b � b�t� and
the reference using the relative rotation/translation
pair

b0

b R � b0
c Rc

bR and
b0

b t � c
b0

R c
bt ÿ c

b0
t

h i
, where

b0
c R � c

b0
R � diag�1;ÿ1;ÿ1�.

3. Measurements

Eye tracking in 2D. At system startup, a raw
estimate of left and right eye location and shape in

the image is derived, so as to initialize the reference
templates (Fig. 3, left). To speed up processing,
the two image regions containing the eyes are ®rst
roughly located by means of edge dominance maps
(introduced by (Brunelli and Poggio, 1993)), i.e.
maps which take into account the dominance of
brightness gradient in a given direction. Once the
regions including the eyes are found, the templates
are adjusted against image data by an energy-
minimization criterion similar to the one intro-
duced in (Yuille and Hallinan, 1992). A quadratic
energy term, function of the 6 eye template pa-
rameters, is minimized, so that the template is re-
laxed inside the eye regions by gradient descent.
To the energy term contribute both peaks and
valleys of image brightness (modeling respectively
the sclera and the iris), and brightness disconti-
nuities. After relaxation, each reference template is
used to initialize the run-time tracker.

The tracker is a lightweight process allowing a
fast eye tracking behavior. It is composed of a
discrete set of points, initialized at startup by
uniformly sampling the reference template's ex-
ternal eye ellipses (reference tracker) for later use.
At run-time, the tracker's parameters are re®ned
and updated by means of a simple tracker-to-im-
age ®tting approach, based on least squares and
the extraction of brightness edge points. To avoid
any false edge matches due to the presence of eye
iris, an independent tracker is used that monitors
the current iris position inside the eye contour
(Fig. 3, middle).

Thanks to the a�ne projection model, each eye/
iris tracker can be made quite robust by allowing it
to deform only in an a�ne fashion, thus con-
straining the possible contour deformations to a
six-dimensional space (Fig. 3, right). Tracking is

Fig. 3. Visual tracking phases. Left to right: raw tracker placement, tracker adjustment, tracker in action during head panning. Normal

segments indicate the local search range for the tracker (see text).
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equivalent to estimating a dynamic visual state
composed, at a generic time t P 0, by the tracker
points fxi�t�g, i � 1; . . . ; n, and their image veloc-
ities. Let the tracker's centroid be xE�t� and the
reference tracker be fxi�0�g with centroid xE�0�
and zero initial velocity. Then external eye track-
ing proceeds according to the following algorithm.

Eye tracking

1. State prediction. A new (time t � 1) visual state
is predicted based on the current state and a
constant velocity model.

2. Image search. In a neighborhood of each pre-
dicted tracker's point, a local search of edge
points (brightness gradient maxima) takes place
at each of the n tracker's points and along nor-
mal directions to the tracker itself. The set
f~xi�t � 1�g of edge points (measurement set) is
computed by means of a recursive coarse-to-
®ne algorithm based on ®nite di�erences.

3. Least squares ®t. The LS approximation of
the new template centroid xE�t � 1� is simply the
centroid of the measurement set: ~xE�t � 1� �
�1=n�Pi ~xi�t � 1�. The 2� 2 matrix LE�t � 1�
is also estimated via LS as the best approxima-
tion ~LE�t � 1� of the a�ne transformation
about the origin between the measurement set
and the reference template.

4. Filtering. The six parameters of the a�ne
image transformation �~LE�t � 1�; ~xE�t � 1�� are
smoothed using a mobile mean ®lter. To
achieve a better control of the tracking process,
a di�erent ®lter gain is assigned to each param-
eter.

5. A�ne state projection. Finally, once the a�ne
transformation �L̂E�t � 1�; x̂E�t � 1�� is ob-
tained, the new tracker is computed as
xi�t � 1� � xE�t � 1� � L̂E�t � 1��xi�0� ÿ xE�0��;
i � 1; . . . ; n, with xE�t � 1� � x̂E�t � 1�. The
new tracker point velocities can now be estimat-
ed from the LS comparison between the new
(time t � 1) and old (time t) tracker instances.
The a�ne projection ensures that at each time
t the tracker is an a�ne-transformed instance
of the reference tracker obtained at t � 0.

Experimental evidence has demonstrated that
this tracking algorithm has a good performance in

terms of tracking e�ciency (it executes in real-time
even with a PC based system), adaptability to en-
vironment (especially lighting) conditions and to
human subjects variability, accuracy and reliabili-
ty. Speci®cally, the recovery time from tracking
lags is inversely proportional to the template-to-
eye mismatch, while the average time before
tracking loss is about 20 minutes.

3D parameters estimation. In order to remap
user movements into 3D pointer commands for
the system, the 2D information extracted as above
is used to derive 3D estimates related to head
movements. An estimate of relative translation
(
b0

b t) and orientation (s; r;/) can be obtained, in
principle, from a single a�ne transformation
(LE; xE), based on xE�t�, xE�0�, and the manipu-
lation of LE�t�; this method (see Appendix A) re-
quires a disambiguation strategy for the s and /
angles, which proves to be not robust enough for
this operational context. Therefore, we introduce
here a more direct approach, exploiting the
piecewise a�ne camera model expounded in Sec-
tion 2 to obtain a robust and unambiguous esti-
mate of both head pose and relative translation
from the comparison of the current (time t) and
reference (time 0) trackers for the left and right
eyes. Such a comparison is expressed through the
transformations (LL; xL) and (LR; xR). The quan-
tities of interest are the ocular centers xL and xR,
the depth ratio g � cZR=

cZL and the weighted in-
terocular di�erence dx � xL ÿ gxR. We see from
Eqs. (1) and (2) that g can be estimated as

g �
�������������������������������
det LL= det LR

p
; �3�

where the determinant is a measure related to area
changes of the imaged pattern. Besides, from the
face planarity assumption and the projection
model of Eq. (1) we easily get that the r and s
angles are related to each other by

tanr � k�gÿ 1�
coss sins� �T � dx

P 0: �4�

Fig. 4 shows the relationship between tracker's
shape and head position when the head is in an
arbitrary (left) and in the reference (right) position.
We assume that, independently from head cyclo-
torsions (rotations about the normal to the face
plane), the slant angle r always coincides with the
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head pan angle (rotation about the neck axis). A
consequence of equating pan and slant angles is
that the / angle equals 0 for gP 1, and p other-
wise. Another consequence is that the direction of
the line passing through the left and right ocular
centers coincides with the direction of maximum
depth variation, i.e. the absolute value of the de-
nominator in Eq. (4) is maximum. This, and the
fact that the left-hand side of Eq. (4) must be
positive or zero, yields the following equality
which can be used to compute s:

coss sins� �T � sgn�gÿ 1�dx=kdxk; �5�
where sgn�0� _� 1. Using the computed value of s in
Eq. (4) provides us ®nally with an estimate of the
pan angle r.

So far with the orientation estimation. Con-
cerning translations we notice that, since kcpRk is
much larger than bZ, we can neglect this unknown
value and estimate

bo
b�t�t simply as cpR�t� ÿ cpR�0�.

Hence we have

bo
b�t�t / c

b0
R fR�t� xR�t�

k

� ��
ÿ xR�0�

k

� ��
; �6�

where the relative depth for the right eye fR�t� �c

ZR�t�=cZR�0� is computed using the weighted in-
terocular di�erences, the depth ratio and the
slant, as fR�t� � g�t� cosr�t�kdx�0�k=kdx�t�k. The
translation parameters can be recovered using
Eq. (6) up to the unknown scale factor jR�0�. This
indetermination ± which has no practical draw-
backs in our operating context, see next section ±

originates from modeling the eyes not from how
they look like in the face plane but from their
image appearance.

Fig. 5 presents some examples of real-time es-
timation of 3D head parameters. In each of the
examples, the computed pose parameters are
graphically represented by the perspective view of
a planar disc and its associated normal vector
(upper left corner of each image). Translation
parameters ± shown just below the pose parame-
ters ± are synthetically encoded through a 2D
oriented segment (representing the translation
components parallel to the image plane) and a
circle, whose radius is inversely proportional to
the head translation component perpendicular to
the camera. The ®rst row of Fig. 5 shows (at
left) the situation soon after the reference tracker
acquisition, and (at right) the situation after a
head translation in the direction of increasing
depth (notice that the translation circle is smaller
than that of the reference position). In the second
row of Fig. 5, head pose estimates are shown after
a rightwards head pan and upwards translation
(left), and (right) after a rightwards head pan of
double magnitude accompanied by a rotation
around the optical axis. Notice, especially in the
last case, a shape change w.r.t. the reference very
similar to that illustrated in Fig. 4: one eye is
becoming bigger and the other is becoming
smaller.

Comparative experiments conducted at ®xed
(ground truth) head positions have shown the su-
periority of the piecewise a�ne representation for

Fig. 4. The 2D parameters used for 3D head displacement estimation.
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3D pose estimation expounded above over the
single a�ne map strategy sketched in Appendix A.
In particular, the average orientation error in the
®rst case is always below 5°, and up to 15° in the
second case.

4. Interactive graphics application

The 2D tracking and 3D pose estimation system
described above was used for the design and im-
plementation of a 3D interactive graphics envi-
ronment, visualizing a virtual museum featuring
canvases by famous 20th century artists. The en-
vironment allows to navigate around in the mu-
seum so as to inspect each single canvas.

Graphical remapping and interface semantics.
User head displacements are remapped into the
interactive environment by means of a virtual
camera, representing the imaginary device used to
obtain the 2D on-screen view of the virtual scene

from a given point of the 3D graphic environment
(see (Foley and van Dam, 1982)). Speci®cally, any
3D user head motion is replicated in the environ-
ment, as if the virtual camera was moving in his
place. The remapping is one±one for orientation
angles, and proportional for translations, with a
constant of proportionality controlling interface
sensitivity to the amount of user translation:

vp � b0

b RT v0
p

h
ÿ diag�kx; ky ; kz�b0

b t
i
; �7�

where diag�kx; ky ; kz� is the translation scaling di-
agonal matrix. In Eq. (7) we assume that the 3D
virtual scene is de®ned in terms of v0 coordinates,
and that the virtual camera frame at time t is
v � v�t�, with v�0� � v0. Using this method, as the
user approaches the screen without rotating the
head (translation in the positive b0 Z direction),
the objects in the observed scene come closer, with
an amount of scale change depending directly on
the remapping constant kz. Proportional viewpoint

Fig. 5. Head pose estimation examples. In raster order: reference, translation away from the camera, r � p=8 rotation plus upwards

translation, r � p=4 rotation plus counterclockwise cyclotorsion.
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control is basically a qualitative way of performing
remapping which has the advantage of providing
the user with a natural feedback as the result of his
action. Non-proportional viewpoint control or the
presence of large 3D parameter estimation errors
would produce an unexpected interface behavior,
with the result of confusing the user.

The dialogue semantics currently implemented
in the interface is based on a drag and click meta-
phor, which lets the user interact with the envi-
ronment with his head to perform navigational
and selection actions as with conventional point-
ing devices. Explicitly, head displacements w.r.t. a
®xed reference are interpreted as pointer drags, or
navigational actions; the pointer can instead trigger
a selection action (click) as it persists in the
neighborhood of a geometric con®guration for a
convenient time interval. Hence, the head can be
used to navigate or to displace objects (drag) and
to select, or ``freeze'', a 3D scene of interest in it
(click). An issue of relevant practical importance is
the time responsiveness of the interface; this is
directly related to the time threshold used to
measure persistence and assign the proper seman-
tics to user action. Choosing the right threshold
value is of key importance to have a good balance
between speed of operation and naturality of in-
teraction. A good time threshold taking into ac-
count the relative slow mobility of the head, is 2 s,
which on the one hand guarantees a fast response,
and on the other limits the occurrence of false
alarms.

Equipment and interaction examples. The inter-
face uses the OpenGL graphic libraries and runs

on a Silicon Graphics Indy workstation. The vi-
sion subsystem software also runs on the Indy, and
gets raw image data through a VINO frame
grabber board from an inexpensive B/W camera.
The overall interaction loop time for our system is
the sum of the time spent doing visual computa-
tions and graphic environment manipulation. Ini-
tializating visual algorithms involves automatic
eye extraction and template initialization and
takes around 450 ms to complete. At run-time
visual tracking runs at video rate (25 Hz) instead,
using n � 64 sampling points for external eye
search. Without special hardware for graphics
acceleration, most of the loop time is taken by 3D
graphic remapping (some hundreds of ms at an
intermediate picture quality).

Experiments have been performed with several
users and di�erent interaction conditions. Exam-
ples of typical interaction sessions are illustrated in
Fig. 6 (left, right), in which image frames are
presented in raster order. Fig. 6 (left) shows a
zoom-in sequence. Zooming is obtained by ap-
proaching the screen with the head; this causes the
painting in the middle of the wall to be displayed
at full resolution. Fig. 6 (right) illustrates the
generation of a viewpoint change determined by a
head rotation: a leftward head pan causes the
graphic environment to move rightwards, and
display a previously invisible museum wall. Notice
the simultaneous presence of a slight leftward head
translation. Once a speci®c viewpoint has been
selected by head rotation, the user can produce a
``click'' (scene freeze), and go back to the reference
position, so as to inspect the on-screen scene and

Fig. 6. Zoom (left) and Pan (right) sequences.
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learn more about painter/period by clicking with
the mouse on any canvas.

5. Conclusions and future work

In this paper, a computer vision based ap-
proach for advance human±computer interaction
through head displacements has been presented,
and integrated in a non-immersive virtual reality
application. Such an approach exploits a piecewise
a�ne camera model to ensure a robust and fast
tracking of eye contours, whose geometrical de-
formations are then used to estimate head pose
and translation parameters and drive the interac-
tion according to a simple interface metaphor.

The approach can be easily modi®ed so as to
support di�erent advanced interaction scenarios
and applications. Another direction of future re-
search is to fully couple the head driven 3D ap-
proach presented here with the gaze driven
approach presented by the authors in (Colombo
and Del Bimbo, 1997), featuring exactly the same
eye tracking engine but with the di�erent scope of
enabling interaction in 2D contexts based on eye
pupil shifts.

Appendix A. Pose and depth from a single a�ne

projection map

The scope of this appendix is to show how the
3D quantities that enter in the a�ne projection
map of a planar object ± namely, pose (s, r, /) and
centroid depth cZO ± can be recovered in principle
from the knowledge of H � LH�0�. In our case,
the planar object of interest can be either a single
eye or the left and right eyes taken together, and
considered as a subset of the face plane. First of
all, let us express H in terms of its (unique) de-
composition

H � 1

2

d ÿ c
c d

� ��
� a b

b ÿ a

� ��
: �A:1�

Since the numbers d (divergence) and c (curl) are
invariant w.r.t. coordinate system rotations, re-
ferring to Eq. (1) it is easy to show that the un-
known 3D parameters are related to the entries of
H by

d � jOcsÿ/�cr ÿ 1�;
c � jOssÿ/�cr ÿ 1�;
b � jOss�/�cr � 1�;
a � jOcs�/�cr � 1�:

�A:2�

Due to the pose ambiguity (see Section 2), the
nonlinear system of Eq. (A.2) admits the dual so-
lutions �s; r;/; c ZO� and �s� p; r;/� p; c ZO�.
Explicitly, it holds

r � arccos

���������������
a2 � b2

q
ÿ

��������������
c2 � d2

q
���������������
a2 � b2

q
�

��������������
c2 � d2

q
0B@

1CA �A:3�

(with the constraint

���������������
a2 � b2

q
P

��������������
c2 � d2

q
),

cZO � 2k���������������
a2 � b2

q
�

��������������
c2 � d2

q ; �A:4�

where the term

���������������
a2 � b2

q
(deformation) is also

invariant w.r.t. the local coordinate system, and

2s � arctan
b
a

� �
� arctan

c
d

� �
;

2/ � arctan
b
a

� �
ÿ arctan

c
d

� �
:

�A:5�

Following the strategy proposed in (Horaud
et al., 1995), the two solutions can be disambigua-
ted by choosing, between the two candidate solu-
tions, the one with smallest LS error with respect
to raw tracking data, after template data resyn-
thesis using the computed 3D parameters and the
full perspective model. This method works well, of
course, if the di�erences between the full pespec-
tive view and the a�ne view are large, i.e., in our
case, if the left and right eyes are considered as a
single planar object. However, if the departure
from the a�ne model is signi®cant, the tracking
performance using a�ne templates gets worse, and
an incorrect estimate of the candidate solutions is
obtained. Besides, even if a single eye map is
considered, estimating pose and depth through
Eqs. (A.3)±(A.5) can lead to gross errors due to ill-
conditioning, since the matrix entries are quite
small if the object extension is small. That is why,
in this paper, 3D parameters are estimated by
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decomposing the overall projection map into two
di�erent a�ne maps (see Section 3).
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