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Abstract. Compact yet intuitive representations of digital videos are
required to combine high quality storage with interactive video indexing
and retrieval capabilities. The advent of video mosaicing has provided a
natural way to obtain content-based video representations which are both
retrieval-oriented and compression-efficient. In this paper, an algorithm
for extracting a robust mosaic representation of video content from sparse
interest image points is described. The representation, which is obtained
via visual motion clustering and segmentation, features the geometric
and kinematic description of all salient objects in the scene, being thus
well suited for video browsing, indexing and retrieval by visual content.
Results of experiments on several TV sequences provide an insight into
the main characteristics of the approach.

1 Introduction

Quite recently, the rapid expansion of multimedia applications has encouraged
research efforts in the direction of obtaining compact representations of digital
videos. On the one hand, a compact video encoding is required for high qual-
ity video storage; on the other hand, an ad hoc video representation needs to
be devised at archival time in order to ease video browsing and content-based
retrieval. Past approaches to video compression (see e.g., the standards MPEG
1 and 2) have privileged image processing techniques which, taking into account
only the signal-level aspects of visual content, emphasize size reduction over
retrieval efficiency. More recently, they have been presented browsing-oriented
computer vision techniques to represent videos by reconstructing the very pro-
cess of film making [4]. These techniques are capable to segment the video into a
number of “shots,” each delimited by film editing effects such as cuts, dissolves,
fades, etc. The description of shot content relies then on the extraction of sali-
ent “keyframes.” However, the above techniques have the limitation of providing
only a partial information of video content, being it impossible to reconstruct
a video only from its keyframes. The advent of mosaicing techniques [7], [§]
paved the way to content-based video representations which are both retrieval-
and compression-efficient. Such techniques reduce data redundancy by repres-
enting each video shot through a single patchwork image composed using all of
its frames.

In this paper, a method to represent video content through image mosaics is
described. Mosaics are extracted from video data through corner-based tracking



and a 2D affine motion model. An original motion clustering algorithm, called
DETSAC, is proposed. The obtained video representation features the image and
motion description of all salient objects in the scene, and is well suited to both
video browsing and retrieval by visual content.

2 Video Segmentation

The primary task of video analysis is video editing segmentation, i.e. the identi-
fication of the start and end points of each shot. Such a task implies solving two
problems: 7) avoiding incorrect identification of shot changes due to rapid motion
or sudden lighting change in the scene; i) detect sharp (cuts) as well as gradual
transitions (dissolves). To avoid false shot change detection, a correlation metric
based on HSI color histograms is used, which is highly insensitive even to rapid
continuous light variations while maintaining reliable to detect cuts. To detect
dissolves, a novel algorithm based on corner statistics is used, based on mon-
itoring the minima in the number of salient points detected. During a dissolve,
while the previous shot gradually fades out and its associated corners disappear,
the new one fades in, its corners being still under the saliency threshold [3].

3 Shot Analysis

Once a video is segmented into shots, each shot is processed so as to extract
its 2D dynamic content and allow its mosaic representation. Image motion is
processed between successive frames of the shot via a three-step analysis: (1)
corner detection; (2) corner tracking; (3) motion clustering and segmentation.

Fig. 1. Corner detection. The pixel locations corresponding to extracted corners are
shown in white.

Corner Detection. An image location is defined as a corner if the intensity gradi-
ent in a patch around it is not isotropic, i.e. it is distributed along two preferred
directions. Corner detection is based on the algorithm originally presented by
Harris and Stephens in [6], classifying as corners image points with large and
distinct values of the eigenvalues of the gradient auto-correlation matrix. Fig-
ure 1(right) shows the corners extracted for the indoor frame of Fig. 1(left).



Corner Tracking. To perform intra-shot motion parameters estimation, corners
are tracked from frame to frame, according to an algorithm originally proposed
by Shapiro et al. in [9] and modified by the authors to enhance tracking robust-
ness. The algorithm optimizes performance according to three distinct criteria,
namely:

Frame similarity: The image content in the neighborhood of a corner is virtually
unchanged in two successive frames; hence, the matching score between image
points can be measured via a local correlation operator.

Proximity of Correspondence: As frames go by, corner points follow smooth
trajectories in the image plane, thus allowing to reduce the search space for
each corner in a small neighborhood of its expected location, as inferred
based on previous tracking results.

Corner Uniqueness: Corner trajectories cannot overlap, i.e. it is not possible
that at a same time two corners share the same image location. Should this
happen, only the corner point with higher correlation would be maintained,
while the other would be discarded.

Fig.2. Corner tracking examples. st row: translation induced by camera panning;
2nd row: divergence induced by camera zooming; 3rd row: curl induced by camera
cyclotorsion.

Since the corner extraction process is heavily affected by image noise (the num-
ber and individual location of corners varies significantly in successive frames;
also, a corner extracted in one frame, albeit still visible, could be ignored in the



next one), the modified algorithm implements three different corner matching
strategies, ensuring that the above tracking criteria are fulfilled:

— strong match, taking place between pairs of locations classified
as corners in two consecutive frames;

— forced match, image correlation within the current frame, in
the neighborhood of a previously extracted corner;

— backward match, image correlation within the previous frame,
in the neighborhood of a currently extracted corner.

These matching strategies ensure that a corner trajectory continues to be traced
even if, in some instants, the corresponding corner fails to be detected. Fig. 2
shows corner tracking examples from three different commercial videos, and fea-
turing diverse kinds of 2D motions induced by specific camera operations. Each
row in the figure shows two successive frames of a shot, followed by the traced
corners pattern.

Motion clustering and segmentation. After corner correspondences have been
established, an original motion clustering technique is used to obtain the most
relevant motions present in the current frame. Each individual 2D motion of the
scene is detected and described by means of the affine motion model
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characterizing image points displacements — (z, y) and (2, ¥’) denote the coordin-
ates of a same point in the previous and current frames, respectively. Motion
clustering takes place starting from the set of corner correspondences found for
each frame. A robust estimation method is adopted, guaranteeing on the one
hand an effective motion clustering, and on the other a good rejection of false
matches (clustering outliers).

The clustering technique, called DETSAC (“DETerministic SAmple Con-
sensus”), is an adaptation of the “RANdom SAmple Consensus” (RANSAC)
algorithm ([5], see also [2]) to the problem of motion clustering. DETSAC oper-
ates as follows. For each trajectory obtained by corner tracking, the two closest
corners trajectories are used to compute the affine transformation (i.e., the 6
degrees of freedom aq, ..., as) which best fits the trajectory triplet (each corner
trajectory provides two constraints for eq. (1), hence three non collinear tra-
jectories are sufficient to solve for the six unknown parameters). The number
of trajectories “voting” for each obtained transformation candidate determine
the consensus for that candidate. Iterating the candidate search and consensus
computation for all possible corner triplets, the dominant motion with maximum
consensus is obtained. All secondary motions are iteratively computed exactly in
the same way, after the elimination of all the corner points with dominant mo-
tion. The RANSAC algorithm is conceived to reject well outliers in a set of data
characterized by a unimodal population. Yet, in image motion segmentation, it is
highly probable that two or more data populations are presented at a given time



instant, corresponding to independently moving objects. In such cases, RANSAC
is likely to produce grossly incorrect motion clusters. As an example, Fig. 3 shows
that, when attempting to cluster data from two oppositely translating objects,
RANSAC wrongly interprets the two motions as a single rotating motion.

Fig. 3. Motion clusters for two translating objects. Left: Ground truth solution. Right:
RANSAC solution.

Although DETSAC is conceived to solve the multimodal distribution prob-
lem, however, it achieves this at the cost of a diminished parameter estimation
accuracy (nearby trajectories tend to amplify ill-conditioning). Therefore, DET-
SAC is only meant to provide a rough motion estimate, to be refined later via
an iterative weighted least squares strategy, where the higher is the departure
of each individual observation from the current estimate, the lower is its associ-
ated weight. In such a way, the robustness to outliers of DETSAC is efficiently
coupled with the estimation accuracy of least squares. Besides, the above clus-
tering algorithm would exhibit a somewhat tendency to fragment each cluster
into sub-clusters. To avoid that, a further cluster merging step is performed, to
ensure that each new cluster is distant enough from previous clusters in the space
of affine transformations [10]; if this does not happen, clusters below a minimum
threshold are merged together. The distance between two affine transformations
A= (ag,...,as) and B = (ay, ..., as) is defined as
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where p; = |a; — a}| for i = 0,...,5, and [ = (w + h)/2 is the average frame
size. Qualitatively, eq. (2) expresses the displacement (in pixels) produced in the
frame’s periphery as the effect of the difference between the motions A and B.
Indeed, each addend under the square root expresses the contribution of each
individual parameter to the overall displacement.

Another important feature of the clustering algorithm is temporal subsampling.
In fact, by limiting initially the motion analysis to every 16 or 32 frames, slow
motions or motions very similar to each other can be succesfully detected and dif-
ferentiated. Only in a second phase, the motion analysis is refined by iteratively



halving the frame interval; until all the frames of a sequence are processed. The
motion clusters obtained at higher subsampling levels are used as constraints for
clustering refinement, so as to avoid that previously formed clusters are incor-
rectly merged.

Fig. 4. Residual errors and motion segmentation. The two motion clusters obtained are
shown using white and black arrows, respectively.

Figure 4 provides a clustering example obtained from a news video, includ-
ing a man moving in an exterior. As the camera pans rightwards to track the
man, the image background moves leftwards; hence, the shot features two main
image motions (man, background). The upper row of Fig. 4 reports two success-
ive frames, and the result of corner tracking; in the lower row, they are shown
the residual segmentation errors relative to the background (dominant motion)
and the man (secondary motion), respectively, together with the final clustering
result.

The actual motion-based segmentation is performed by introducing spatial
constraints to the classes obtained via the previous motion clustering phase.
Compact image regions featuring homogenous motion parameters — thus cor-
responding to single, independently moving objects — are extracted by region
growing [1]. The motion segmentation algorithm is based on the computation of
an a posteriori error obtained by plain pixel differences between pairs of frames
realigned according to the extracted affine transformations.

4 Representation Model

The mosaic-based representation includes all the information required to recon-
struct the video sequence, namely,

— location of each shot in the overall sequence;
— type of editing effect;
— mosaic image of the background;



— 2D motion due to the camera (for each frame);
— 2D motion and visual appearance of each segmented region (also for each
frame).

Figure 5 shows some frames of a video sequence featuring composite horizontal
and vertical pan camera movements, and the mosaic obtained. The mosaic image
captures all the background details which are present at least in one frame of
the sequence. Also, the mosaic composes individual frame details into a global
description of the background (notice, e.g., that the babies are never visible all to-
gether in just one frame). Figures 6 and 7 show two more complicated examples,
featuring camera panning and zooming and the presence of an independently
moving objects. Notice, again, that both the car in Fig. 6 and the farm in Fig. 7
is almost integrally visible in the mosaic image, although it is not so in each
individual frame. The mosaic representation also allows to “erase electronically”
an object from a video (e.g., in Fig. 6, the man is segmented out from the back-
ground mosaic image).
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