Corso di Laurea in Ingegneria Informatica

Calcolatori Elettronici I — a.a. 2003–2004

Compito del 17 settembre 2004

Cognome e Nome dello studente:

Il microprocessore μP_1 (dati 16 bit, indirizzi 24 bit) annovera tra le sue istruzioni assembly

dove PVAR è il puntatore alla parola VAR da trasferire nello stack (modo di indirizzamento *indiretto di memoria*). Si supponga che address(PVAR)=112A54h, PVAR=123456h e VAR=78D1h.

- 1/ Fornire una codifica di macchina plausibile per l'istruzione (*), indicando il numero di cicli di bus necessari per completarne fetch ed esecuzione.
- 2/ Ipotizzando per μP_1 un'architettura a singolo bus interno con R_1 – R_7 registri di uso generale e R_0 stack pointer, riportare in forma di automa a stati finiti o di microprogramma la sezione di controllo relativa al fetch ed all'esecuzione di (*).

Il microprocessore μP_2 possiede la medesima struttura di bus (sia interno che esterno) di μP_1 , ma è dotato delle sole istruzioni di trasferimento dati

LOAD
$$R_i$$
, e STORE , R_i

con <MemOp> operando di memoria esprimibile in modo diretto oppure indiretto di registro.

- 3/ Scrivere un programma assembly per μP_2 che emuli l'istruzione (*) di μP_1 .
- 4/ Confrontare le prestazioni ottenute con i due microprocessori, sia in termini di cicli di bus che di tempo di esecuzione (colpi di clock).
- 5/ Come si potrebbe emulare con μP_2 la chiamata a procedura di μP_1 CALL PIPPO mediante l'istruzione di salto incondizionato JUMP PIPPO?