## Corso di Laurea in Ingegneria Informatica

Calcolatori Elettronici I — a.a. 2003–2004

## Compito del 20 novembre 2003

#1

 $\mathbf{A}/$  Servendosi del metodo delle divisioni binarie successive per la base  $(1010)_2$ , convertire in decimale il numero  $N=(1011101)_2$  espresso in rappresentazione naturale. Verificare il risultato calcolando il valore di N come somma di potenze di 2.

**B**/ Data la funzione booleana di tre variabili  $f(a,b,c)=a\oplus(b+c)$ , rappresentarla facendo uso del solo operatore NAND.

C/ La macchina sequenziale M mostrata in figura possiede un ingresso parallelo  $A = a_1 a_0$  ed uno seriale  $B = \dots b_{t+1} b_t \dots b_3 b_2 b_1 b_0$ , entrambi in rappresentazione naturale  $(a_0, b_0 = \text{LSB})$ . Ad ogni istante  $t \geq 0$ , la macchina produce in uscita il bit  $p_t$  del prodotto aritmetico  $P = A \times B$ .



- 1. Progettare M, disegnandone la parte operativa ed elencando ingressi e uscite della parte di controllo.
- 2. Provare il funzionamento della macchina negli istanti  $0 \le t \le 7$ , nel caso  $A = 11, B = \dots 01001011$ .

D/ Sia data l'istruzione assembly 8086 PUSH vect[BX], con vect DW 12,04CH,0011011110110110B posto in memoria a partire dall'indirizzo fisico DS:6528.

- 1. Spiegare il significato dell'istruzione, mostrando i cambiamenti nello stack nel caso in cui all'inizio dell'esecuzione si abbia sp=0168H e Bx=2.
- 2. Con l'aiuto della tabella dei modi di indirizzamento qui sotto, trovare la codifica di macchina (esadecimale) dell'istruzione sapendo che la sua codifica generale è

3. Scrivere una sequenza di istruzioni assembly 8086 che, senza servirsi dell'istruzione PUSH, operi in modo equivalente all'istruzione data.

| <b>r/m</b> 000 | 00<br>BX+SI | 01<br>BX+SI+D8 | 10        | 1   | 1   | reg |
|----------------|-------------|----------------|-----------|-----|-----|-----|
| 000            | BX+SI       | BYTCITU8       |           |     | 11  |     |
| 000            |             | DA   51 T DO   | bx+si+d16 | AL  | AX  | 000 |
| 001            | BX+DI       | BX+DI+D8       | BX+DI+D16 | CL  | CX  | 001 |
| 010            | BP+SI       | BP+SI+D8       | BP+SI+D16 | DL  | DX  | 010 |
| 011            | BP+DI       | BP+DI+D8       | BP+DI+D16 | BL  | BX  | 011 |
| 100            | SI          | si+d8          | si+d16    | AH  | SP  | 100 |
| 101            | DI          | DI+D8          | DI+D16    | CH  | BP  | 101 |
| 110            | D16         | BP+D8          | BP+D16    | DH  | SI  | 110 |
| 111            | BX          | BX+D8          | BX+D16    | BH  | DI  | 111 |
|                |             |                |           | w=0 | w=1 |     |

E/ In un sistema 8088, ad un'interfaccia di ingresso sono associati due indirizzi di porta consecutivi (dati, stato) a partire da F7H. Il contenuto della parola di stato (8 bit) è xxxxxxSM, dove S=1 indica "dispositivo pronto" e M il modo di trasferimento correntemente utilizzato dal dispositivo (M=1 per i caratteri alfabetici, M=0 per i caratteri non alfabetici). Scrivere una procedura assembly per I/O a controllo di programma, che consenta di porre nel buffer di memoria alphbuff fino a un massimo di 128 caratteri alfabetici. Il programma deve terminare sia in caso di buffer pieno che all'arrivo di un carattere non alfabetico.

## Alcune varianti

 $\mathbf{B}'/$  Data la funzione booleana di tre variabili  $f(a,b,c)=a+(b\oplus c)$ , rappresentarla facendo uso del solo operatore NOR.

D'/ Sia data l'istruzione assembly 8086 MOV [BX] [DI], 45C7H.

- 1. Spiegare il significato dell'istruzione, illustrando a titolo di esempio il caso in cui BX=7, DI=0168H e DS=A5D2H.
- 2. Con l'aiuto della tabella dei modi di indirizzamento qui sotto, trovare la codifica di macchina (esadecimale) dell'istruzione sapendo che la sua codifica generale è

```
[1100011w] [mod 000 r/m] (disp-lo) (disp-hi) (data-lo) (data-hi, if w = 1)
```

3. Scrivere una sequenza di istruzioni assembly 8086 che, facendo uso per la scrittura in memoria del modo di indirizzamento relativo di registro, operi in modo equivalente all'istruzione data.

D''/ Sia data l'istruzione assembly 8086 MOV vect, offset vect, con vect DW 04CH,12,0011011110110110B posto in memoria a partire dall'indirizzo fisico DS:7530.

- 1. Spiegare il significato dell'istruzione, e mostrare il suo effetto nel caso particolare dato sopra.
- 2. Con l'aiuto della tabella dei modi di indirizzamento qui sotto, trovare la codifica di macchina (esadecimale) dell'istruzione sapendo che la sua codifica generale è

```
[1100011w] [mod 000 r/m] (disp-lo) (disp-hi) (data-lo) (data-hi) (if w = 1).
```

3. Scrivere una sequenza di istruzioni assembly 8086 che, utilizzando per la scrittura in memoria il modo di indirizzamento indiretto di registro, operi in modo equivalente all'istruzione data.

D'''/ Sia data l'istruzione assembly 8086 POP [BX+2].

- 1. Spiegare il significato dell'istruzione, mostrando i cambiamenti nei segmenti dati e stack nel caso in cui all'inizio della sua esecuzione si abbia SP=0188H e BX=1250H.
- 2. Con l'aiuto della tabella dei modi di indirizzamento qui sotto, trovare la codifica di macchina (esadecimale) dell'istruzione sapendo che la sua codifica generale è

$$[10001111] [mod 000 r/m] (disp-lo) (disp-hi)$$

3. Scrivere una sequenza di istruzioni assembly 8086 che, senza servirsi dell'istruzione POP, operi in modo equivalente all'istruzione data.

|     | mod   |          |           |     |     |     |  |
|-----|-------|----------|-----------|-----|-----|-----|--|
| r/m | 00    | 01       | 10        | 11  |     | reg |  |
| 000 | BX+SI | BX+SI+D8 | BX+SI+D16 | AL  | AX  | 000 |  |
| 001 | BX+DI | BX+DI+D8 | BX+DI+D16 | CL  | CX  | 001 |  |
| 010 | BP+SI | BP+SI+D8 | BP+SI+D16 | DL  | DX  | 010 |  |
| 011 | BP+DI | BP+DI+D8 | BP+DI+D16 | BL  | BX  | 011 |  |
| 100 | SI    | si+d8    | si+d16    | AH  | SP  | 100 |  |
| 101 | DI    | DI+D8    | DI+D16    | СН  | BP  | 101 |  |
| 110 | D16   | BP+D8    | BP+D16    | DH  | SI  | 110 |  |
| 111 | BX    | BX+D8    | BX+D16    | ВН  | DI  | 111 |  |
|     |       |          |           | w=0 | w=1 |     |  |