Corso di Laurea in Ingegneria Informatica

Calcolatori — a.a. 2013–2014

Prova in itinere del 7 novembre 2013

Cognome e Nome dello studente:	

Dato un intero a ed un intero positivo m primi tra loro, si definisce ordine moltiplicativo di a modulo m il più piccolo intero λ tale per cui $a^{\lambda}-1=0$ (modulo m). La funzione $\lambda(a,m)$ svolge un ruolo importante nella teoria dei numeri e nella costruzione di sequenze pseudo-casuali. Un algoritmo per il calcolo di $\lambda(2,m)$, con m dispari, è il seguente:

- 0. Poni $\lambda = 0, k = 1$.
- 1. Poni $k \leftarrow (2 \times k)$.
- 2. Se k > m allora poni $k \leftarrow (k m)$.
- 3. Incrementa λ . Se k = 1 stop, altrimenti vai al punto 1.

Progettare (parte operativa e parte di controllo) una macchina sequenziale che calcoli $\lambda(2, m)$ con m dispari minore di 256.

- O Disegnare la parte operativa della macchina;
- ♦ Disegnare il diagramma degli stati della parte di controllo;
- Disegnare lo schema a blocchi completo delle due parti del sistema e delle loro connessioni, evidenziando i clock ed i segnali di condizione e controllo.
- \spadesuit Indicare l'andamento temporale di ingressi, stati e uscite del controllo nel caso m=19;
- A Realizzare l'hardware della parte di controllo facendo uso di registro di stato e multiplexer.