Corso di Laurea in Ingegneria Informatica

Calcolatori Elettronici I — a.a. 2004–2005

Compito del 22 giugno 2005

* SOLUZIONI *

1/a Indovinello

Nel paesino di Bianconero, i manigoldi dicono sempre il falso, e i cavalieri sempre il vero. Di Bianconero sono A e B. "Siamo entrambi manigoldi", dice il primo. Chi è chi?

Risolvere l'indovinello adoperando le proprietà dell'algebra di Boole e/o le tabelle di verità. Associare il valore 1 alle proposizioni vere, e 0 a quelle false.

soluzione

Indichiamo con α , β e γ le variabili booleane associate rispettivamente ai valori di verità (1 \mapsto vero, 0 \mapsto falso) delle proposizioni "A è un cavaliere", "B è un cavaliere", "A e B sono entrambi manigoldi". L'ultima frase è quella pronunciata da A: il suo valore di verità dipende dai valori di verità delle altre due frasi, e si può scrivere che $\gamma = \Gamma(\alpha, \beta)$, con $\Gamma(\cdot)$ funzione booleana di due variabili. Nel nostro caso, si ha

$$\Gamma(\alpha, \beta) = \overline{\alpha}\overline{\beta} \ . \tag{1}$$

Data una qualsiasi proposizione P, essa è logicamente compatibile con la natura di chi la pronuncia (cavaliere o manigoldo), quando essa risulta vera se a pronunciarla è un cavaliere, e/o (or inclusivo) risulta falsa se a pronunciarla è un manigoldo. Dunque la particolare proposizione del problema è compatibile con la natura di A se $\alpha = \Gamma(\alpha, \beta)$ è verificata per qualche coppia (α, β) . In altre parole, gli eventuali valori delle variabili α e β per cui (l'operatore NXOR verifica l'uguaglianza di due variabili)

$$\overline{\alpha \oplus \Gamma(\alpha, \beta)} = \alpha \Gamma(\alpha, \beta) + \overline{\alpha} \overline{\Gamma(\alpha, \beta)} = 1$$
 (2)

forniscono la soluzione del problema dato. Si noti che la soluzione non è in generale unica, potendo accadere che le espressioni $\alpha \Gamma(\alpha, \beta)$ e $\overline{\alpha} \Gamma(\alpha, \beta)$ valgano 1 simultaneamente o separatamente per diverse coppie (α, β) . Può anche accadere che nessuna coppia (α, β) soddisfi l'equazione 2, nel qual caso il problema non ammette soluzione. Sostituendo l'eq. 1 nella 2 si ricava immediatamente che nel nostro caso dev'essere $\overline{\alpha}\beta = 1$, ossia che la soluzione è unica, e si ha che A è un manigoldo $(\alpha = 0)$ e B è un cavaliere $(\beta = 1)$.

Nel paesino di Bianconero, i manigoldi dicono sempre il falso, e i cavalieri sempre il vero. Di Bianconero sono A e B. "Uno di noi almeno è un manigoldo", dice il primo. Chi è chi?

soluzione

Lavoriamo stavolta con le tabelle di verità, costruendo valore per valore prima la funzione $\Gamma(\alpha,\beta)$, e poi la funzione di compatibilità $\Theta(\alpha,\beta) = \alpha \Gamma(\alpha,\beta) + \overline{\alpha} \overline{\Gamma(\alpha,\beta)}$: le eventuali righe in cui tale funzione assume valore 1 forniscono le configurazioni soluzione del problema. Quando la funzione di compatibilità è espressa da un solo mintermine, allora la soluzione è unica.

α	β	$\gamma = \Gamma(\alpha, \beta)$	αγ	$\overline{\alpha}\overline{\gamma}$	$\Theta(\alpha,\beta)$
0	0	1	0	0	0
0	1	1	0	0	0
1	0	1	1	0	1
1	1	0	0	0	0

È quanto accade in questo caso. La soluzione è che A è un cavaliere ($\alpha = 1$) e B è un manigoldo ($\beta = 0$).

Approfondimento. Supponiamo che A pronunci la frase $P_A = "Se B \ e \ un$ manigoldo, io sono un cavaliere", e B pronunci la frase P_B = "A ed io siamo diversi": cosa si può concludere? Stavolta la sola affermazione di A non permette di risolvere in modo univoco il problema dell'identità di A e B. Infatti, la funzione di compatibilità $\Theta_{A}(\alpha,\beta) = \alpha \Gamma_{A}(\alpha,\beta) + \overline{\alpha} \overline{\Gamma_{A}(\alpha,\beta)}$, con $\Gamma_{\rm A}(\alpha,\beta) = \overline{\beta} \to \alpha = \beta + \alpha = \overline{\overline{\beta} \cdot \overline{\alpha}}, \text{ vale } \Theta_{\rm A}(\alpha,\beta) = \overline{\beta} + \alpha = \beta \to \alpha$: da essa si ricava soltanto che non può accadere che A sia manigoldo ($\alpha = 0$) e B cavaliere ($\beta = 1$). (L'operatore \rightarrow , definito da $p \rightarrow q = \overline{p} + q$, prende il nome di "implicazione materiale" in logica proposizionale: esso stabilisce che la conclusione q segue sempre dalla premessa p, salvo nel caso in cui la premessa sia vera (p = 1) e la conclusione falsa (q = 0) — ad es., "se l'asino vola allora 1+1=3" è vera, mentre "se il merlo vola allora 1+1=3" è falsa.) La frase di B consente peraltro di rimuovere l'incertezza sull'identità di A e B. Infatti, è $\Gamma_{\rm B}(\alpha,\beta) = \alpha \oplus \beta$, da cui $\Theta_{\rm B}(\alpha,\beta) = \overline{\alpha}$. Ora, dovendosi avere congiuntamente (prodotto logico) $\Theta_A = 1$ e $\Theta_B = 1$, si può costruire la funzione di compatibilità totale del problema $\Theta(\alpha, \beta) = \Theta_{A}(\alpha, \beta) \Theta_{B}(\alpha, \beta) =$ $\overline{\alpha} \overline{\beta}$, che assume valore 1 solo se entrambi A e B sono manigoldi. Con le tabelle di verità:

α	β	$\Gamma_{\rm A}(lpha,eta)$	$\Theta_{\rm A}(\alpha,\beta)$	$\Gamma_{\mathrm{B}}(\alpha,\beta)$	$\Theta_{\mathrm{B}}(\alpha,\beta)$	$\Theta(\alpha,\beta)$
0	0	0	1	0	1	1
0	1	1	0	1	1	0
1	0	1	1	1	0	0
1	1	1	1	0	0	0