

2D-to-3D Photo Rendering for 3D Displays

Atsuto Maki² **Dario Comanducci**¹ **Carlo Colombo**³ **Roberto Cipolla**⁴ ^{1,3} Dipartimento di Sistemi e Informatica, University of Florence, Italy — {comandu, colombo}@dsi.unifi.it ² Toshiba Research Europe Ltd, Cambridge UK — atsuto.maki@crl.toshiba.co.uk ⁴ Dept. of Engineering, University of Cambridge, Cambridge UK — cipolla@eng.cam.ac.uk

TOSHIBA Leading Innovation >>>

Problem

Semi-automatic 2D-3D conversion of an image pair for rendering on stereoscopic displays.

Rendering

Ground plane

L and R homographies induced by π :

- $\mathbf{H}_{l,r} = \mathbf{K}_i (\mathbf{I} \mp \mathbf{sn}_{\pi}^{\top} / d_{\pi}) \mathbf{K}_i^{-1}$
- $\diamond [\mathbf{n}_{\pi}^{\top} d_{\pi}]^{\top}$ ground plane parameters $\diamond K_i$ calibration matrix for view I $\diamond \mathbf{s} = [\delta/2 \ 0 \ 0]^{+}$ $\diamond \delta$ baseline for the virtual cameras

Results

1. Horse

I and *J* and their estimated vanishing lines.

◇Inputs: reference image I, support image J $\diamond I$ is transformed into the *virtual* stereo pair (I_l , I_r) ◊ *J* is employed to recover calibration and geometry \diamond Roles of *I* and *J* can be swapped

Theatrical scene model

Background

♦ For each point P on the top border of π , its image $\mathbf{p} \in I$ is mapped onto I_l and I_r , respectively as $\mathbf{p}_l = \mathbf{H}_l \mathbf{p}$ and $\mathbf{p}_r = \mathbf{H}_r \mathbf{p}$. The image of the vertical segment above **P** is then rendered on either image as $\mathbf{q}_{l,r}(\lambda) = \mathbf{p}_{l,r} + \lambda \mathbf{v}^{\perp}$, where \mathbf{v}^{\perp} is the vanishing point of the normal to π .

 \diamond When (e.g. in I_r) the top border of the ground is occluded by the foreground between \mathbf{a}_r and \mathbf{b}_r , the quadrilateral $\{\mathbf{a}_r, \mathbf{b}_r, \mathbf{a}_r^{\perp}, \mathbf{b}_r^{\perp}\}$ is computed, where \mathbf{a}_r^{\perp} and \mathbf{b}_r^{\perp} are respectively the intersections of the lines $\mathbf{a}_r \times \mathbf{v}^{\perp}$ and $\mathbf{b}_r \times \mathbf{v}^{\perp}$ with the border of I_r . Unoccluded background points within this quadrilateral are mapped from *I* by a suitable homography.

♦ Background regions that are occluded in *I* by the foreground are filled in I_l and I_r by color interpolation.

Foreground

Left: Rectified ground plane. The right angle between the two walls is correctly recovered, proving that geometry was correctly estimated. Right: Estimated disparity map.

Some frames of a synthetic video sequence obtained from image *I*. The camera performs a virtual translation along the *x*-axis. Occluded background points are colored in black.

2. Bride

(a, b): *I* and *J* and their estimated vanishing lines. (c): Recovered disparity map: The effect of the ruled surface assumption id visible in the left picture;

Ground rendering

for I_r .

 \diamond Ground plane π ♦ Background: vertical ruled surface ♦ Foreground elements: vertical and flat

Overview

- ♦ Foreground elements are rendered as flat and vertical silhouettes.
- ♦ Depth is assigned as the value corresponding to the point of contact with the ground (the lowest silhouette point).

nevertheless the visualized stereoscopic image is perceived without artifacts. (d): Comparison with a state-of-the-art dense stereo algorithm [4].

3. Bushes

I and *J* and their estimated vanishing lines.

Recovered disparity map (left) compared with the result of [4] (right).

Conclusion

♦ Notwithstanding the simple theatrical model employed for the scene, the disparity maps generated with our approach are accurate enough to provide users with a stunning 3D impression of the dis-

Geometry

Camera self-calibration

- ◇ Robust estimation of fundamental matrix F.
- \diamond Estimation of internal camera matrices K_i , K_j by forcing $\hat{E} = K_i^{\top} F K_i$ to have the same properties of the essential matrix [3].
- ♦ Recovery of extrinsic camera parameters, i.e. rotation matrix R and translation vector $\hat{\mathbf{t}} = \mathbf{t}/||\mathbf{t}||$ by factorization of $\hat{E} \sim [t]_{\times} R$.

Ground plane equation

- $\diamond \mathbf{n}_{\pi} = \mathbf{K}_{i}^{\top} \mathbf{l}_{\pi}$, where \mathbf{l}_{π} is the vanishing line of π in image *I*.
- $\diamond \mathbf{l}_{\pi}$ is the fixed line of the planar homology

Image segmentation

♦ Ground plane: supervised learning [1] ♦ Foreground: interactive [2] ♦ Background: the remaining regions

 $H_p = H_{\pi}^{-1} H_{\infty}$, where $H_{\infty} = K_j R K_i^{-1}$. $\diamond H_{\pi}$ is the homography induced by π between *I* and *J*. It is parameterized as $H_{\pi}(\mathbf{v}) = [\mathbf{e}']_{\times} \mathbf{F} - \mathbf{e}' \mathbf{v}^{\top}$, being $e'^{\top}F = 0$. The parameter vector v is computed from at least 3 point correspondences.

 $\diamond d_{\pi}$ is obtained by triangulating any two corresponding points of the ground plane.

Vertical vanishing point It is obtained from the normal to π as $\mathbf{v}^{\perp} = \mathbf{K}_i \mathbf{n}_{\pi}$ and is the same for I, I_l , I_r .

played scene.

♦ Comparing the disparity map with the result of [4], the two maps look very similar. However, dense stereo is ten times slower than our approach.

Selected references

- 1. D. Hoiem, A. Efros, and M. Hebert. Recovering surface layout from an image. IJCV, 75(1), 2007.
- 2. C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. SIGGRAPH, 2004.
- 3. P. Mendonça and R. Cipolla. A simple technique for selfcalibration. CVPR, 1999.
- 4. O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global stereo reconstruction under second-order smoothness priors. PAMI, 31(12), 2009.