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Abstract. This paper proposes a novel color correction scheme for
image stitching where the color map transfer is modelled by a monotone
Hermite cubic spline and smoothly propagated into the target image.
A three-segments monotone cubic spline minimizing color distribution
statistics and gradient differences with respect to both the source and
target images is used. While the spline model can handle non-linear
color maps, the minimization over the gradient differences limits strong
alterations on the image structure. Adaptive heuristics are introduced
to reduce the minimization search space and thus computational time.
Experimental comparisons with respect to the state-of-the-art linear
mapping models show the validity of the proposed method.
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1 Introduction

Color correction is an essential step nowadays in image and video stitching
pipelines [8]. After the spatial image registration, colors between corresponding
pixels can have strong inconsistencies, due to different acquisition light condi-
tions, such as varying exposure levels and viewpoints, which cannot be elimi-
nated by image blending techniques alone [1]. Different color correction methods
have been proposed across the years. In particular, worth to be mentioned are
the gain compensation [1] and the Reinhard’s method [5], both modelling linear
color map functions.

The gain or exposure compensation was introduced to address color balancing
in panoramic mosaicing by a least-square minimization approach, in order to
get a symmetric blending across the overlapping area across multiple images.
On the other hand, the Reinhard’s method proposes a linear transformation to
make the mean and the standard deviation of color distribution of the target
image corresponding to those of the source image. Extensions of both methods
have been proposed [7,8].

Beyond model-based parametric approaches as those described above, mod-
eless non-parametric approaches exist [4], but according to a recent evaluation
work [10] the two cited methods are preferable in the general case of image
stitching due to their output quality, stability and speed. This paper introduces
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a novel color correction algorithm using a monotone spline model as mapping
function to better handle non-linear maps. The proposed model, described in
Sect. 2, is obtained by exhaustively searching the knots defining the spline which
minimizes an error function based on the intensity values and the gradients of
the source and target images. Due to the complexity of the minimization func-
tion, not analytically manageable, to speed-up the computation and provide the
results in reasonable time, adaptive heuristics have been introduced to reduce
the minimization search space. Details are presented in Sect. 2.1.

In order to better handle local image properties, overlapping areas between
the source and target images are divided into blocks and the corresponding local
color maps are computed. Local color maps are then propagated smoothly with
morphological operators and Gaussian blur to provide a smooth color change
across non-overlapped areas. This last step is described in Sect. 2.2.

Finally, in Sect. 3 a quantitative experimental evaluation has been carried
out on real images. The new spline method is compared against the Reinhard’s
method and an asymmetric version of the gain compensation, according to quan-
titative measures, in a similar way to the approach of [10], in Sect. 3.1. As shown
in Sect. 3.2, according to the evaluation, the proposed spline method achieves
better and robust results in terms of image quality, while maintaining reason-
able computational times.

Conclusions and future work are discussed in the end of the paper (Sect. 4).

2 Method Description

2.1 Spline Color Mapping

Given a source image I1 and a target image I2, the proposed method aims
to obtain a color corrected source image Ĩ1 which looks similar to image I2

by a transformation f between color intensity values, i.e. for a pixel p in the
overlapping areas between the two images it holds

Ĩ1(p) = f(I1(p)) ≈ I2(p) (1)

In addition, a smooth transition between overlapping and non-overlapping areas
of the target image is required to not alter the corrected source image. The
Reinhard’s method [5] defines a linear color map function fR so that the mean
and standard deviation of the intensity values between the corrected source
image Ĩ1 and target image I2 are equal by imposing

fR(x) =
σ2

σ1
(x − μ1) + μ2 (2)

where μk, σk are respectively the mean and standard deviation for a generic
image Ik, here assumed to be computed only in the common area I1 ∩ I2. On
the other hand, with the gain compensation method, the gains gk defined as

Ĩk(p) = gk Ik(p) (3)



Color Correction for Image Stitching 167

Fig. 1. (a) An example of the search space of the two spline knots K1 and K2 for the
minimization of the error Es, bigger marks underline the selected knots, see text for
more details. (b) An example of the color map propagation, see text for more details
(Color figure online).

are chosen to minimize a quadratic error between the intensity values of the
source and target images (see [1] for more details).

In this paper, we propose a more general color mapping function fs using
a monotone Hermite cubic spline [3] with 4 knots. Two of the knots are fixed
to the extremal mapping values to preserve the bijective property. Taking into
account the monotonic constraint, this implies that fs(0) = 0 and fs(255) = 255,
assuming a single channel 8-bit integer color range. The choice of the other two
non-fixed knots Km = (xm, ym) = (xm, fs(xm)), with m ∈ {1, 2} and x1 <
x2 and y1 < y2, gives rise to different color mapping functions, from linear
to sigmoid-like and exponential models (see Fig. 1(a), green and red lines). In
particular, we look for the model that minimizes the following weighted error
function Es:

Es = wμ eμ + wσ eσ +
�

d∈{x,y}

�

n=1,2

wd,In
ed,In

(4)

where the wk are given weight values (according to our experiments, we set
wμ = 0.5 and all the others to wk = 0.1). The errors eμ = |μs − μ2| and
eσ = |σs − σ2| are respectively the absolute differences between mean values
and the standard deviations of the color intensities of the corrected source im-
age and the target image, in a way similar to the Reinhard’s method. Here, μs, σs

are the corresponding statistics for the corrected source image. To improve struc-
ture similarity with the target image but also to constrain the image structure to
the source image, the average derivative absolute differences ed,In

in the direction
d are taken into account in the minimization thus defining

ed,In
=

1
|I1 ∩ I2|

�

p∈(I1∩I2)

�����
∂Ĩ1

∂d
(p) − ∂In

∂d
(p)

����� (5)

Since an analytical solution for minimizing the proposed error es is not trivial,
an exhaustive search for the two knots can be done instead. In the case of



168 F. Bellavia and C. Colombo

8-bit integer, i.e. n = 256, imposing only the monotonic condition, this implies
that knot abscissas and ordinates count both for n (n − 1)/2 so that we get
t = (n (n − 1)/2)2 = n2(n − 1)2/4 ≈ 109 different error values to check, which is
infeasible in practice. Nevertheless, the search space can be dramatically reduced
by observing that, for a given knot, perturbations of its position only slight
change the error es and some knot positions are redundant, see Fig. 1(a) for
a visual explanation. In our case, still referring to Fig. 1(a), defining uniform
squared grids in the range of [0, 144] and [111, 255] for each knot respectively,
with a step of 8 (i.e., a 19×19 grid size) and a chess-like alternate grid sampling,
drastically reduces the search space to approximately 3×104 possible knot pairs,
still maintaining an almost optimal solution.

The process can still be optimized further by pre-computing the possible
splines associated to each knot pair and it can take advantage of parallel CPU
processing, reducing to about 4000 error evaluations per thread on a 8 core CPU.
Furthermore, according to our experiments, the error on the mean intensity color
eμ is predominant, while other error measures just refine the solution. We then
define a double step check: if the error eμ for the current solution is greater than
eμ + 15 of the best solution so far, we discard the current solution avoiding to
compute the full error Es, thus saving computation.

Finally, if more local color maps have to be computed, as described in the next
section, one can take advantage of the already computed neighbourhood color
maps, since close color maps change smoothly. Assuming 8-connectivity image
blocks, given the color map f0

s (green line in Fig. 1(a)) and at least b already
optimized of its adjacent block color maps f i

s (red lines) with i = 1, . . . , b and
3 ≤ b ≤ 8, an “average” spline can be computed on which to sample the knots
(yellow area). In particular for a given 0 ≤ xm ≤ 255 we constrain ym to

fs(xm) − 4σfs(xm) ≤ ym = f0
s (xm) ≤ fs(xm) + 4σfs(xm) (6)

where fs(xm) and σfs(xm) are respectively the mean and standard deviation
of the neighbourhood spline mapping values f i

s already computed (purple and
yellow lines respectively).

2.2 Color Map Propagation

Due to the general inability of a single color map to cover correctly all the color
transformations in the overlapped image area, the source and target images are
aligned and the area divided in blocks of size 32 × 32 px as shown in Fig. 1(b),
to reflect the color locality property. Color maps are computed for each block
with at least 50 % of overlap between the two images (red blocks). A wider area
of size 64 × 64 px centered in the block (black square on the red block) is used
for the color map computation to avoid abrupt color changes.

In order to achieve a smooth change towards non-overlapping areas of the
corrected source image I1, color maps of the boundary blocks of the overlapping
area are propagated as follows. Considering the block-like versions of the source
and target images I1 and I2, boundaries of the overlapping region are expanded
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over non-overlapping blocks of I1 using the dilation morphology operator [6]
with a square 3 × 3 block kernel.

An increasing label l = 0, 1, . . . , u is assigned accordingly to the iteration,
stopping to grow when a number of blocks equal twice the number of the over-
lapping blocks has been incorporated or no more blocks can be included (see
Fig. 1(b), blue gradient blocks). Since boundary blocks are labelled l = 0, start-
ing from the blocks with l = 1, a smoothed color map is obtained for these blocks
by applying a convolution with a normalized 3 × 3 Laplacian pyramid kernel [2]
on the adjacent blocks with a lower label value. Kernel weights corresponding
to equal or higher label values are set to 0 and the kernel is re-normalized (see
zoomed grid image); convolution is performed between corresponding map val-
ues, i.e. between the fs(x) for a same x of the adjacent blocks. Finally, we linearly
blend the propagated color values with the effective values in the non-overlapping
area of the source image. Explicitly

Ĩ1(p) =
l�

u
I1(p) +

�
1 − l�

u

�
f�

s (I1(p)) (7)

where l� and f�
s are the interpolated values of l and fs in the color map cor-

responding to the block containing p after a Gaussian expansion [2] is used to
avoid block-like effects, see Fig. 2(e) for an output example.

3 Experimental Results

3.1 Evaluation Setup

The proposed method was evaluated on a novel dataset of 52 registered color
image pairs belonging to 6 real planar scenes, obtained by varying the image
exposition. Images and code for the evaluation are freely available1. We compare
the proposed spline method against Reinhard’s method and an asymmetric ve
rsion of the gain compensation (see the additional material2 for more details).
The color map propagation described in Sect. 2.2 was applied to all methods in
order to achieve a fair comparison, thus only varying the color map function
computation.

For each image pair we run two different tests to evaluate the methods. In
the first test T1, we just considered the error with respect to the target image as
ground-truth in the overlapping area R = I1∩I2 between the two aligned images.
To evaluate the color propagation, in test T2, a random chosen connected subset
of 40 % of the overlap area R� ⊂ R was considered as the effective overlapping
area to obtain the color map, while color propagation was made in the remaining
overlapping area Rc = R \ R� (see Fig. 2).

In both setups we considered the results obtained on grayscale images (lumi-
nance channel) and color images. In the latter case the methods were applied to
each of the RGB channels independently. Using the ground-truth target image
1 http://cvg.dsi.unifi.it/download/spline/spline.zip.
2 http://cvg.dsi.unifi.it/download/spline/spline additional material.zip.



170 F. Bellavia and C. Colombo

(a) (b) (c) (d) (e)

Fig. 2. Source image (a), target image (b), overlapping area R = I1 ∩ I2 (c), R� (gray)
and Rc (black) regions (d) and spline method output (e) for an example T2 test setup
(Color figure online).

I2, we evaluated the color corrected source image Ĩ1 according to Structural
SIMilarity (SSIM) index [9] and error measures defined on the intensity values
and gradient, denoted respectively as Ec and Ed. The SSIM index is an image
quality index that measures the structure coherence of one image with another.
It was already used in color transfer evaluations [10] and works on grayscale
images only. Assuming the RGB colorspace, the error Ec on the image inten-
sities is defined instead as the average root mean square (RMS) error for each
considered pixel p, which reduces to the average absolute error in the case of
grayscale images

Ec =
1

|A|
�

p∈A

RMS
�
Gσe

∗ Ĩ1(p) − Gσe
∗ I2(p)

�
(8)

where A is the image region among {R, R�, Rc} on which to evaluate the error.
Convolution with a Gaussian kernel Gσe

with standard deviation σe = 8 has been
applied to both the corrected source and target images in order to cope with
small image misalignment errors. The gradient error Ed is defined in similar way.

In order to rank the methods, since the dataset contains image pairs going
from small color variations to challenging ones, we promote strong error differ-
ences between the methods with respect to small ones. For a given image pair
and evaluation criterion, we define the normalized smooth rank r(m) for the
value m associate to a method as

r(m) =
|m − mb| + δ�

n∈{m} (|n − mb| + δ)
(9)

where mb is the best value among those of the compared methods (the maximum
for the SSIM index, the minimum for the Ec and Ed errors), and δ is a tolerance
factor to avoid strong rank variations in the case of small measure differences,
set to δ = 1 in the case of the SSIM index and Ec and to δ = 0.1 for Ed.

3.2 Results

Table 1 shows the average smooth ranks for each method in the case of color
and grayscale images for the different tests and evaluation criteria, while in
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Table 1. Average smooth rank (%) for the difference evaluation measures, best values
are in bold.

T1 T2

R R Rc R
Spline Reinhard’s A. Gain Spline Reinhard’s A. Gain Spline Reinhard’s A. Gain Spline Reinhard’s A. Gain

SSIM index 12.9 32.0 55.0 13.1 30.8 56.0 18.3 22.1 59.4 14.8 27.4 57.7
Ec (RGB) 05.2 12.9 81.7 06.0 12.4 81.4 14.0 10.8 75.0 08.5 10.8 80.5
Ec (gray) 07.8 12.6 79.5 08.4 12.3 79.1 16.8 12.6 70.4 11.5 11.8 76.6

Ed (RGB) 14.7 44.8 40.4 15.3 42.7 41.9 29.3 27.9 42.6 29.4 39.8 30.7
Ed (gray) 21.0 44.9 33.9 21.2 43.6 35.0 33.2 33.3 33.3 32.0 38.1 29.7

(a) (b) (c) (d) (e)

Fig. 3. Source images (a), target images (b), spline (c), Reinhard’s (d) and asymmetric
gain compensation (e) outputs for some image pairs used in the evaluation (Color figure
online).

Fig. 3 some challenging examples are shown. Corrected source images are over-
imposed on the target image, without applying any blending to better appreciate
the outputs. For detailed results on each image pair, see the additional material
(See footnote 2). According to the results, the proposed spline method provides in
general the best outputs, followed by Reinhard’s method, while the asymmetric
gain compensation gives the worst results. This holds for the SSIM index and
the Ec and Ed errors in both the color and grayscale cases. As an additional
observation, it can be noted that color images give higher errors, since some
information is lost by handling the color channels independently.

About the computing time, the average time per block are 550ms, 2ms and
2ms respectively for the spline, Reinhard’s and asymmetric gain compensation
methods. Furthermore, the average time for block in the case of the spline method
double from 550ms to 1200ms when the adaptive search space according to
adjacent color maps is not implemented (see 6). The computing time of the
spline method is reasonable (about 5 min for a color image pair) and feasible for
off-line tasks, also considering the better visual output quality of the method with
respect to the second ranked Reinhard’s method in the case of challenging image
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pairs. In this cases, the Reinhard’s method look more unrealistically contrasted
or with wrong colors due to strong exposure variations (see Fig. 3, top and middle
rows) or misalignment issues (bottom row).

4 Conclusions

This paper describes a novel color correction method for image stitching, which
adopts a spline model and can handle non-linear color map functions. Different
heuristics have been introduced to reduce the model search space and, conse-
quently, the computation time. The comparison with state-of-the-art color cor-
rection algorithms shows the robustness and the validity of the approach. Future
work will include to test adaptive block shapes according to the image segmen-
tation as in [7] and further computation speed-up improvements.
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