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Abstract. One of the main problems that visually impaired people have
to deal with is moving autonomously in an unknown environment. Cur-
rently, the most used autonomous walking aid is still the white can.
Though in the last few years more technological devices have been in-
troduced, referred to as electronic travel aids (ETAs). In this paper, we
present a novel ETA based on computer vision. Exploiting the hardware
and software facilities of a standard smartphone, our system is able to
extract a 3D representation of the scene and detect possible obstacles.
To achieve such a result, images are captured by the smartphone camera
and processed with a modified Structure from Motion algorithm that
takes as input also information from the built-in gyroscope. Then the
system estimates the ground-plane and labels as obstacles all the struc-
tures above it. Results on indoor and outdoor test sequences show the
effectiveness of the proposed method.
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1 Introduction

One of the main problems that a person with visual disabilities has to
deal with is the difficulty of moving in an unknown environment. More
precisely, the most urgent problem is related to avoiding obstacles along
the path. Currently, visually impaired people still rely almost exclusively
on the white can to help themselves to detecting obstacles and finding a
safe path.
Recently, more technological solutions have been developed to support
the autonomous mobility of visually impaired people [2]. Yet currently,
proposed methods tend to not completely fulfill all the user requirements,
so that visually impaired people are usually skeptical about them, and
not keen to replace traditional solutions. ETAs, to be fully accepted by
the users, should be reliable, affordable, light and their usage should
not be an evident mark of disability. Moreover, they should be designed
so that hands and ears remain free, thus allowing users to manipulate
objects and acoustically perceive their surroundings.



In the last few years an ever increasing diffusion of mobile devices, such as
smartphones and tablets, has been observed. These devices are character-
ized by relatively high computational resources and limited dimensions.
Equipped with visual and inertial sensors, they offer an optimal plat-
form for the development of computer vision mobile applications [15]. In
particular such devices can support the development and use of effective
yet inconspicuous vision-based ETAs for the visually impaired [5].
In this paper, a novel vision-based ETA is proposed. Exploiting both the
inertial gyroscope and the camera, nowadays available in any consumer
smartphone, our system is able to compute the depth of the scene in
front of the user and detect the presence of near obstacles. Next Section
(Sect. 2) briefly describes related work on ETA. Then in Sect. 3 the
proposed method is described. Section 4 discusses experimental results
obtained on indoor and outdoor sequences, and Sect. 5 concludes the
paper.

2 Related Work

To solve the problem of autonomous mobility for the visually impaired,
solutions based on the Global Positioning System (GPS) cannot be con-
sidered due to their lack of accuracy and the impossibility to work in
indoor scenarios. Hesch and Roumeliotis [8] propose a system that in-
cludes a pedometer and a laser scanner mounted on the white cane:
While the authors show its validity, the additional hardware and the
need of a precomputed map of the environment decrease the usability of
this approach. In [1, 4] the authors propose systems that visually detect
known makers placed into the scene so to guarantee accurate localiza-
tion of the user: Though effective, these approaches are limited to work
only in previously structured environments. Zhang et al. [18] developed
a smartphone-based system to visually localize the user. A drawback of
this method is that images of the environment have to be previously col-
lected and mapped, and heavy 3D computations must be run on a remote
server. Other ETAs based on vision can provide localization information
though object detection and optical character recognition (OCR) soft-
wares, such as [17], or by exploiting visual and depth information to train
a conditional random field (CRF) framework [14]. In [5] a smartphone-
based application to detect and recognize bus line numbers have been
developed to help visually impaired people to use public transport ser-
vices.
Several systems were proposed to provide users with navigational aids
and to detect obstacles exploiting a stereo camera pair. Leung and Medioni
[9] propose an odometry system using stereo images and an inertial mea-
surement unit (IMU) to reduce drift errors. Papers [11–13] describe meth-
ods focused on obstacle detection and safe path estimation, that employ a
stereo pair to improve estimation accuracy. However, stereo cameras are
currently quite expensive, bulky and showy, as compared to a standard
mobile device.
In [10,16] ETAs based on single camera systems are introduced. In par-
ticular, Tapu et al. [16] develop a smartphone-based method for obstacle



detection by computing homography relations and exploiting HOG de-
scriptors for obstacle classification.

3 Method Description

Our method is designed to work with generic obstacles in both indoor
and outdoor environments. Given an image sequence I captured by a
calibrated smartphone camera attached to the user chest, the presented
method implements a modified Structure from Motion (SfM) algorithm
by taking advantage of the gyroscope installed on the mobile device.
For each acquired image the system read the angular velocity (θ̇x, θ̇y, θ̇z)
registered by the gyroscope; then by temporal integration, the rotation
angles (θx, θy, θz) can be retrieved. With this information we can com-
pute an estimation for the incremental rotation Rij between two subse-
quent images Ii, Ij ∈ I. Once the measurements have been acquired, the
gyroscope status is re-initialized to limit the drift error.

3.1 Scene reconstruction

Our modified SfM algorithm takes as input both a pair of images Ii, Ij
and their relative rotation matrix Rij .
At first point correspondences between Ii, Ij are computed using the
FAST corner detector and the ORB feature descriptor. Once obtained
the matching set, we exploit the relation on the essential matrix E [7],
i.e.

x>j K
−>EijK

−1xi = 0 (1)

where {xi,xj} is a match between Ii and Ij , and K is the calibration
matrix. Then, since the essential matrix can be decomposed as E =
[t]×R, by substitution in Eq. 1 we obtain

x>j K
−>[tij ]×RijK

−1xi = 0 (2)

where Rij is the rotation matrix and [tij ]× the skew-symmetric matrix
of the translation vector tij . Tij = [Rij |tij ] describes the relative trans-
formation between Ii and Ij .
Since Rij is supposed to be known from gyroscope readings, we can define
x̂j = K−1xj and x̃i = RijK

−1xi and Eq. 2 becomes

x̂>j [tij ]×x̃i = 0 (3)

Now Eq. 3 can be rewritten as a linear homogeneous equation on the el-
ements of tij . With at least three correspondences—or just two if the
translation scale factor is fixed a priori— we can solve a linear sys-
tem to estimate tij . However, wrong matches are always present, and to
avoid the introduction of outliers, we wrap the estimation process into a
RANSAC framework [3]. Once the maximum consensus set is found, tij
is refined minimizing the error on all the inlier correspondences.
Similarly to what happens with the decomposition of the essential ma-
trix, the solution of Eq. 3 has a two-fold ambiguity on the sign of the



translation. To select the correct vector, we triangulate [6] all inlier cor-
respondences with both candidate solutions and we retain the 3D map
satisfying the positive depth constraint on most points (i.e. the 3D points
must lie in front of both cameras). The computed 3D of the scene is then
exploited for the detection of obstacles.

3.2 Obstacle detection

To detect obstacles and evaluate their proximity to the user, our algo-
rithm estimates first the scene ground-plane, and simultaneously identi-
fies 3D points that lie on it.
The system selects a 3D point set Sπ = {Xp} related to matched cor-
respondences detected in the bottom part of the images (under the hy-
pothesis that such points belong to the ground-plane). Then a robust
plane estimation algorithm is executed over Sπ by randomly choosing
three points for each RANSAC iteration k.
In each iteration, a plane equation πk(nk, dk) is evaluated, where nk
is the plane πk normal vector and dk its distance w.r.t. the origin of
the coordinate frame. A 3D point Xp ∈ Sπ is considered as inlier if
n>kXp + dk < ε1. In our experiments we set ε1 to a low value (e.g.
ε1 = 0.1) in order to perform a strict selection of inliers. Note that
to evaluate inliers we use an algebraic criterion instead of a geometric
point/plane distance: while the latter approach is typically more correct,
in this case, since we don’t have the metric scale factor of the scene,
the definition of the right threshold for the geometric distance can be
misleading.
Once obtained the maximum inlier set S̃π, the 2D correspondence set
associated to S̃π is used to estimate the homography transformation Hij
between the planar regions of Ii and Ij . Then all matches that don’t
already have the associated 3D point in S̃π are tested: If the distance
D(xi,xj) defined as

D(xi,xj) = ||Hijxi − xj || (4)

is less than ε2, then the 3D point relative to the correspondence {xi,xj}
is considered as a point on the ground-plane.
Finally, all 3D points that don’t belong to the ground plane are labeled
as obstacles and their relative depth can be exploited to assign different
warning level—higher for closer objects, lower for distant ones.
In order to better evaluate obstacle distances and proximity of collision,
a bird’s-eye view of the scene is produced. To this aim, all 3D points are
at first registered with a coordinate frame with the X and Z axes aligned
with the ground-plane; then all obstacle 3D points are projected onto
the ground-plane.

4 Evaluation

All images that have been used in the tests have a resolution of 320×240
pixels. Processing is carried out on an Android LG Nexus 5 smart-
phone, equipped with a Qualcomm Snapdragon 800 quad-core processor



at 2.3GHz. With this setup, the method works at about 2 seconds per
frame, which is suitable for use at standard walking speed.

Fig. 1 reports the results of an indoor test. The test sequence was recorded
by moving the smartphone over a table where objects simulated a clut-
tered environment. For each original frame the system produced a sparse
depth map and a bird’s-eye view of the scene showing the ground-plane
and the detected obstacles.

Fig. 1: Example frames of the indoor test sequence. In the first column the orig-
inal images, in the second column the spare depth map computed, and finally
the bird’s-eye view with in white the ground-plane and obstacle colored from
red to blue to represent their proximinty to the user. (Best viewed in color)

In Fig. 2 and Fig. 3 results on two different outdoor tests (respectively
named pilon and parking) are reported. The tests were carried out with
a walking person equipped with the smartphone held in front of his
chest. Also in this case the algorithm computes correct depth values and
produces a coherent bird’s-eye view where ground-plane and obstacles
are clearly visible.



Fig. 2: Example frames of the pilon sequence. Again we present the original
images (first column), the sparse depth map with ground-plane points in white
(second column), and the bird’s-eye view (third column). (Best viewed in color)



Fig. 3: Original images, depth map and bird’s-eye view representation for some
frame of the parking sequence. (Best viewed in color)

5 Conclusions and Future Work

In this paper we have presented a smartphone-based obstacle detection
vision system to help visually impaired people to move autonomously



in unknown indoor and outdoor environments. The developed algorithm
exploits both visual information from the camera and inertial measure-
ments registered from the gyroscope. A sparse depth map is computed
with a modified Structure from Motion approach, and obstacles are de-
tected as they pop out the ground-plane. Results show the good perfor-
mance of our method.
Future work will address the development of a tactile/acoustic interface
to provide feedback to visually impaired people and alert them regard-
ing obstacles on their path. An extensive evaluation/refinement process
carried out with the help of blind users is planned, aimed at improving
system performance and usefulness.
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