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Abstract. This paper proposes a novel monocular SLAM approach. For
a triplet of successive keyframes, the approach inteleaves the registration
of the three 3D maps associated to each image pair in the triplet and
the refinement of the corresponding poses, by progressively limiting the
allowable reprojection error according to a simulated annealing scheme.
This approach computes only local overlapping maps of almost constant
size, thus avoiding problems of 3D map growth. It does not require global
optimization, loop closure and back-correction of the poses.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) approaches are designed to
estimate both the camera positions and the 3D map of the environment in
real-time. Early SLAM implementations were based on the Extendend Kalman
Filter [1]. Alternative approaches inspired by Structure from Motion (SfM) tech-
niques were proposed recently [2], and proved to outperform the former [3].

Single camera [1, 2], stereo or multiple camera [4] SLAM systems have ap-
peared. While stereo or multiple camera configurations provide more reliable
solutions, monocular SLAM leads to a more general and simple operative envi-
ronment.

Different feature description and matching strategies [1, 2, 5, 6] have been
used to detect and track keypoints across the image frames: Robust to high
degrees of blur [6], with hierarchical pose refinement [7], or exploiting the high
computational power offered by modern GPUs through a dense approach [5].

SfM-based approaches typically exploit iterative non-linear optimization re-
finement schemes (such as Bundle Adjustment [8]) over sub-sequences of relevant
frames (keyframes). While beneficial for accuracy improvement, such global op-
timization schemes require a good inizialization and are not tolerant to outliers.
Moreover, optimization of long sub-sequences requires a large memory space,
and refined estimates are obtained with some delay with respect to the current



camera position. Loop closure detection [9], enforcing pose constraints on al-
ready visited scenes, which obviously requires looping paths, is also frequently
employed to reduce error accumulation over long tracks.

This paper proposes a novel monocular SLAM system, where a local, ro-
bust simulated annealing scheme replaces the global, SfM optimized approach
for the purpose of obtaning both the 3D map and the camera pose. The pro-
posed approach works locally on triplets of successive overlapping keyframes,
thus guaranteeing scale and 3D structure consistency. Each update step uses
RANSAC and alternates between the registration of the three 3D maps associ-
ated to each image pair in the triplet and the refinement of the corresponding
poses, by progressively limiting the allowable reprojection error. Since the pro-
posed method does not require neither global optimization nor loop closure, it
doesn’t perform any back-correction of the poses and does not suffer of 3D map
growth. In addition, the method can be implemented in an efficient way through
a multi-thread scheme.

The paper is organized as follows. Section 2 introduces the proposed SLAM
system and the novel approach to the computation of the camera pose and the
registration of the 3D points based on the simulated annealing process, while
the experimental evaluation of the system is described in Sect. 3. Conclusions
and final discussions are given in Sect. 4.

2 The SAMSLAM approach

2.1 Overview

Given a calibrated image sequence S = {It}, with radial distortion corrected, our
SLAM approach proceeds by detecting successive triplets Ti = {Iki−1

, Iki
, Iki+1

}
of image keyframes {Iki

} ⊆ S, k0 = 0, ki < ki+1 — see Fig. 1.
A local 3D map Mi is built upon the current keyframe triplet Ti using

the simulated annealing scheme described in Sect. 2.2, which also recovers the
relative poses between keyframe pairs, Pki−1,ki and Pki−1,ki+1 . As the keyframe
triplet is updated from Ti to Ti+1, the first keyframe is dropped and a new one
is queued, so that the 3D maps Mi and Mi+1 overlap and the consistency of
scale and 3D structure is guaranteed.

Image alignment for the generic pair (It1 , It2) is based on keypoint matching.
For each image, keypoints are extracted using the HarrisZ detector [10]. The
sGLOH descriptor [11] with Nearest Neighbour matching is then used to obtain
the candidate correspondences. These are then refined on a temporal constraint
basis as follows. Let xt = [xt, yt]

T ∈ It be a generic keypoint of image It, a
match (xt1 ,xt2) must satisfy the flow motion restriction ‖ xt1−xt2 ‖< δr, where
δr is the maximal flow displacement. Moreover, for a triplet Ti, after a further
match refinement by normalized RANSAC [12], only matches which form a loop
chain

Ci =
{

(xki−1
,xki

), (xki
,xki+1

), (xki+1
,xki−1

)
}

through the corresponding keyframes are retained. The chain matches are used to
estimate the 3D mapMi and the relative keyframe poses Pki−1,ki and Pki−1,ki+1 .



Fig. 1: Overview of the SAMSLAM approach. Keyframe triplets Ti and Ti+1 are
used to estimate successive overlapping local 3D point maps, which are then
employed to retrieve the pose of a generic image frame Ij .

Note that, since outliers are dropped out by the simulated annealing scheme, only
a fraction of the loop chain matches contribute to 3D points in the map Mi.

The relative pose Pki−1,j for a generic image Ij , ki+1 < j, is estimated ac-
cording to the 3D mapMi by employing a robust version of ePnP [13]. In order
for Ij to become the next keyframe Iki+2

, a significant 2D motion with respect to
Iki+1

has to be detected, in which case the current keyframe triplet Ti is updated
to Ti+1.

2.2 Simulated Annealing 3D Map and Pose Estimation

The keyframe triplet Ti is related to the matches (xki+v
,xki+w

) ∈ Ci, with v, w ∈
{−1, 0, 1} and v < w. The simulated annealing approach starts by associating
to each pair (Iki+v , Iki+w) an initial 3D mapMv,w

i , obtained by triangulation on
the matches (xki+v ,xki+w). The relative pose Pki+v,ki+w is extracted from the
essential matrix for the first triplet T1, while for all triplets Ti, i > 1 relative
poses are initialized with the estimates obtained at triplet time i− 1. After this
initialization, the method registers the 3D maps Mv,w

i and refines the poses
Pki+v,ki+w

at each iteration q (in all experiments, a maximum of 8 iterations
were run). A block diagram of the proposed method is illustrated in Fig. 2.

3D map registration is done by the Horn method [14], fixing a 3D reference
map Mref

i from one maps Mv,w
i for all iterations. Inconsistent 3D points with

negative depths in any of the three associated stereo configurations (Iki+v
, Iki+w

)
are removed as well as points far from any of the corresponding camera centres,
since the uncertainty in point localization increases with distance. The propor-
tion p of points discarded by this latter constraint linearly decreases with the
iteration q since a more refined model is obtained as the iterations go on. In our
experiments p is made to decrease from 30% to 1%. Remaining points in the
resulting submap M̃v,w

i are registered to the reference submap M̃ref
i through

the Horn method, made robust to outliers by RANSAC. Reference 3D points of
M̃ref

i are mapped to M̃v,w
i according to the transformation Hv,w

i estimated by



Fig. 2: Diagram of the simulated annealing 3D map and pose estimation executed
for each keyframe triplet Ti.

the Horn method and back-projected to the corresponding images Iv and Iw.
The distances between the back-projected points and the effective matches xv

and xw are used to define inliers. The inlier threshold value εh linearly decreases
with the iteration q, from 20 to 4 pixels in our experiments. At each RANSAC
iteration qh the transformation Hv,w

i is refined. The sampling set is a subset of

the whole validation set and contains only the 25% of points in M̃v,w
i with max-

imal flow displacement. This is beneficial to map accuracy, since high disparity
matches are characterized by a better localization in 3D space.

The pose refinement step also works on the reference 3D map M̃ref
i . The

ePnP with RANSAC is applied to points associated to the common inliers found
in the Horn registration step between the maps M̃v,w

i . The reprojection error
threshold εp used to define inliers linearly decreases with the iteration q, from
5 to 3 pixels in the experiments. Similarly to 3D map registration, a constraint
on the sampling set depending on the RANSAC iteration qp is used. The refined
poses Pki+v,ki+w replace the previous ones for the next iteration q.

Figure 3a shows an example of the simulated annealing scheme on the first
keyframe triplet T1 of the Monk video sequence (see Sect. 3). Fig. 4 shows the

corresponding 3D maps M̃v,w
i for different iterations q. The average reprojection

error gradually decreases for each image pair (Iki+v , Iki+w) to less than 2 pixels,
while the number of 3D point inliers increases and the 3D registration improves.
Note that the first iteration q = 1 of the first keyframe triplet T1 is the most time
consuming in terms of RANSAC iterations with qh, qp ' 500, while in the other
cases qh, qp ' 50 since only refinements are required. The RANSAC-based design
can be useful to define efficient parallel and multi-threaded implementations of
the simulated annealing scheme.

3 Results

In order to evaluate the performance of our monocular SLAM approach, two
different experiments have been carried out: A quantitative direct measure of the
odometry accuracy, and an indirect evaluation of the 3D reconstruction quality
of an object acquired using a structured-light framework.
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Fig. 3: (a) The reprojection errors as the iterations proceed for the first keyframe

triplet T1 of the Monk video sequence. The reference map is M̃ref
1 = M̃−1,11 . Solid

lines indicate the average reprojection errors, while bands show the behaviour
of the standard deviation. Marks represents the maximal values and the dashed
gray line is the RANSAC linear threshold bound εh. (b) The laser scanner con-
figuration for the evaluation of the Monk sequence. (Best viewed in color)
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Fig. 4: The 3D maps M̃v,w
i and the reference map M̃ref

1 at iterations q = 1, 5, 8
for the keyframe triplet T1 of the Monk video sequence. (Best viewed in color)

Three different indoor video sequences with a resolution of 640× 480 pixels
and about 800 frames have been used in the former case — see Table 1a. The
first two sequences (Desk1 and Desk2 ) explore the same desktop environment
as the camera undergoes two different motions, while the last sequence (Monk)
contains an object scanned by a laser fan projector. This last sequence is also
used for the indirect evaluation through 3D reconstruction. A known planar
pattern is included in the background of all test sequences to recover accurate
ground-truth poses using the approach described in [15].

Table 1a shows the Euclidean distance error of the camera centres normalized
to the ground-truth path length, while corresponding tracks are shown in Fig. 5.
Since the scale information is lost, the camera centres have been registered to
the known ground-truth metric scale using the Horn method. SAMSLAM error



is about 1% on average, i.e. less than 1 cm for a track length of 100 cm, and
tracks are well aligned.

Table 1: (a) Distance error of the camera centres with respect to the ground-truth
length. (b) 3D reconstruction error for the Monk sequence.

(a)

Desk1 Desk2 Monk

Mean(%) 1.29 0.93 0.48
Std(%) 0.63 0.30 0.23

Max(%) 3.05 2.39 1.21
Min(%) 0.24 0.29 0.15

Length(cm) 71.31 100.35 74.90

(b)

Monk Ground-truth SAMSLAM

3D reconstruction error (10−3 cm)

Mean Std Max
0.105 0.112 1.616

For the 3D laser-scanned reconstruction test on the Monk sequence, a device
equipped with a camera and a laser fan projector kept in fixed relative position
is used in order to get an accurate 3D model. As depicted in Fig. 3b, C is the
camera centre, Λ the laser fan plane, Γ the 3D laser trace and γ the 2D laser
image.

In basic projection geometry of laser profile Γ onto the image, each point
x of the imaged laser profile γ can be backprojected onto the laser plane Λ,
obtaining its pre-image X ∈ Γ . The backprojection equation can be expressed
as X = αK−1x, where α = d[n>K−1x]−1, n>X − d = 0 is the equation of the
laser plane Λ in inhomogeneous camera-centred coordinates, x is a homogeneous
3-vector, and K is the camera calibration matrix. A 3D profile is obtained in the
camera framework for each frame moving the scanning device. Knowing the
estimated motion, it is possible to collate all the 3D profiles in a unique model.

Table 1b shows the 3D Euclidean reconstruction errors with respect to the
ground-truth obtained with the estimated motion and the reconstructed model.
Even in this case the error is low while the 3D reconstruction is almost identical
to the ground-truth.

4 Conclusions

This paper presents a mono SLAM approach, relying on a local keyframe opti-
mization, based on simulated annealing, which iteratively refines both the mo-
tion estimates and the 3D structure. Direct evaluation of track error and indirect
validation through structured-light 3D reconstruction show good performance of
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Fig. 5: Track comparison for the video sequences Desk1 (a), Desk2 (b) and
Monk (c). Dashed lines for the Monk sequence indicate that no ground-truth
has been provided. (Best viewed in color)

the approach, that does not require neither global optimization nor loop closure
techniques.

Future work will include solutions for a better 3D registration and pose han-
dling in the case of noisy correspondences, due for example to motion blur, and
to enforce the system for long tracks, also adaptively correcting the reference 3D
map in the case of faults. Furthermore, efficient and optimized implementation
of the system will be developed.
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