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Abstract

Assessing if an image comes from a specific device is fundamental in many

application scenarios. The most promising techniques to solve this problem

rely on the Photo Response Non Uniformity (PRNU), a unique trace left

during image acquisition. A PRNU fingerprint is computed from several

images of a given device, then it is compared with the probe residual noise by

means of correlation. However, such a comparison requires that PRNUs are

synchronized: even small image transformations can spoil this task. Most

of the attempts to solve the registration problem rely on time consuming

brute-force search, which is prone to missing detections and false positives.

In this paper, the problem is addressed from a computer vision perspective,

exploiting recent image registration techniques based on deep learning, and

focusing on scaling and rotation transformations. Experiments show that

the proposed method is both more accurate and faster than state-of-the-art
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approaches.
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1. Introduction

Automatic methods to assess the integrity of digital images are of par-

amount importance in order to counter the ever-increasing production and

spread of fake imagery through the media. Image forensic methods [1] try

to solve this problem by observing distinctive traces left during the image

acquisition or manipulation. During the years, several methods have been

developed exploiting either invisible footprints introduced in the signal statis-

tics or physical inconsistencies left directly into the scene. Invisible footprints

include demosaicing artefacts [2], characteristic camera [3] or scanner [4] sen-

sor noise, and compression anomalies [5, 6]. Physical inconsistencies encom-

pass shadows [7], light color [8] and direction [9], and scene geometry, like

perspective [10], 3D constraints [11], and camera principal point [12, 13].

In this paper, we focus on sensor noise analysis to solve the camera iden-

tification problem, i.e., assessing if a given image was acquired with a spe-

cific camera. In particular, we studied the Photo Response Non Uniformity

(PRNU) pattern, a device-dependent noise left during image acquisition by

the camera sensor [14]. PRNU based camera identification is typically ac-

complished by evaluating the correlation between the residual noise extracted

from the probe image, and a set of reference PRNU fingerprints, obtained

from a collection of flat-field images captured with each candidate camera.

The Peak-to-Correlation Energy ratio (PCE) is used to measure the similar-
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ity between the probe and reference signals. Alternative solutions have been

proposed recently, that attempt to boost camera identification performance

by exploiting deep learning either to extract better sensor noises [15] or to

speed-up and improve PRNU matching [16, 17].

PRNU matching is a delicate task, that requires pixel level accuracy.

Hence, even slight geometric image transformations can misalign the residual

noise of the probe and the fingerprint, thus spoiling the camera identification

task. While image translations can easily be recovered as a by-product of

PCE computation (the position of the peak obtaining the maximum score

also indicates the translation between the two signals), scale and rotation

transformations introduce a higher degree of complexity, since they have to

be explicitly recovered before evaluating any correlations. To date, brute-

force is the most popular approach for PRNU alignment [18]. It tests all

possible combinations of scale and rotation, retrieving the one that maximizes

the PCE. However, such approach is computationally slow, and can produce

false positives or missing detections.

In order to provide a faster and more accurate solution, in this paper

we present a method based on deep learning to recover scale and rotation

transformations between PRNU signals. We show how it is possible to train

a Convolutional Neural Network (CNN) to recover PRNU transformations

and use it as a fast pre-processing step before evaluating the PCE.

The paper is organized as follows: In the next section related works are

discussed. Then, in Sect. 3 the proposed method is outlined, by describing

how training data are generated and providing details on the network archi-

tecture. Results of a comparative evaluation between the proposed method
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and state-of-the-art approaches are reported and discussed in Sect. 4. Fi-

nally, in Sect. 5 conclusions are drawn and directions for future work are

outlined.

2. Related works

PRNU is a unique fixed pattern noise generated during the acquisition

process by any digital camera and pixel-wise related to the specific device

sensor. Therefore, it is best extracted and compared at native camera reso-

lution from unaltered probes [19]. Being compared pixel-wise, PRNU signals

become particularly difficult to match when the source images have been

warped as result of the acquisition post-processing. Even small geometric

transformations, maliciously applied by a forger or introduced directly by

the device (e.g., during electronic image stabilization), can spoil the camera

identification task, by strongly reducing the PCE.

During the last few years several works addressed PRNU based camera

identification for stabilized videos, from preliminary works [20] to more ad-

vanced solutions such as brute-force search on video frames [21], hybrid im-

age/video identifications [22, 23], optimized search of transformation parame-

ters [24, 25], or preliminary camera model characterization [26, 27]. However,

a similar effort was not devoted to single images, for which information re-

dundancy cannot be exploited in order to ease the identification task. In [3],

the only geometric transformation admitted is translation. In [18], image

scaling is also considered, thus requiring to remove any amount of zooming

before computing the PCE. Scale removal is typically carried out by brute-

force search, which is computationally expensive, and not always sufficiently
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accurate. In order to speed-up PCE computations, in [28] the PRNU is first

reduced to a digest. The approach, which can deal with zooming and lens

distortion, still requires a full grid-search of the transformation parameters.

In [29], a similar PRNU compression is proposed based on Principal Com-

ponent Analysis. Alternative approaches detect and estimate specific image

transformations (e.g., resampling) using deep learning. In [30], a CNN based

method to estimate the probe scaling factor directly from natural image

patches is presented. In [31], the authors propose a deep learning classifier

to deal with scale, compression, blurring and median filtering transformations

applied to natural images. In [32], a Bayesian neural network is trained in

order to detect resampling manipulations. None of the traditional and deep

methods above takes into account rotation transformations, which neverthe-

less are quite common yet difficult to deal with in a camera identification

scenario. Moreover, none of the CNN-based methods above operate directly

on PRNU signals. To the best of our knowledge, the method proposed in

this paper is the first to address scale and rotation transformations simulta-

neously on PRNU signals directly extracted from single images.

In order to register PRNU images, our method employs a deep network

which is inspired by the deep image homography estimation network initially

proposed in [33] for natural images. Differently from natural images, PRNU

images are characterized by patterns that neither have a clear structure nor

possess characteristic elements such as edges or corners [34]. Moreover, the

fingerprint obtained from a collection of flat-field images and the residual

noise extracted from a single probe coming from the same device are not

identical, since high frequency content unrelated to the PRNU can still be
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present in the residual noise. These observations suggest that working with

PRNU images is more challenging than with natural images, where the net-

work can actually rely on low frequency information that is unavailable in

PRNU signals. Nevertheless, in the rest of the paper we show that a suitably

trained deep net is actually capable to estimate warping transformations

from PRNU details only. Our method specializes on linear homographies,

a.k.a. image similarities, which are the warps that occur most commonly in

practical applications [27].

3. Proposed method

The alignment between the probe residual noise and the camera PRNU

fingerprint is obtained with a deep network trained on similarity transfor-

mations characterized by a combination of scaling and rotation. Once the

probe is properly registered using the parameters estimated by the network,

PRNU matching is achieved with PCE correlation. In order to estimate the

scale and rotation parameters on PRNU signals—which are characterized

by very different contents and structures w.r.t. natural images—the net pre-

sented in [33] was trained from scratch using examples extracted from PRNU

images (see Sect. 3.1): Given the different nature of the inputs, it was im-

possible to achieve positive results with fine tuning techniques. Also, the

net architecture (see Sect. 3.2) was slightly modified in order to produce in

output the parameters of similarity transforms, instead of the those required

for homographies.
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3.1. Example generation

In order to generate the examples used to train and test the network,

patches from the fingerprint and the residual noise were stacked as follows.

Let Fd be the fingerprint of a device d obtained from flat-field unaltered

images, and let Nd be a residual noise extracted from an unaltered natural

image taken with the same device d. Selecting at random the point p ∈ Fd

and perturbing its x and y coordinates with a random shift ∆ = [δx, δy]
⊤, a

new point p′ = [x + δx, y + δy]
⊤ is obtained. The shift vector ∆ naturally

induces a minimal representation of the random similarity transformation

S = σ

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (1)

such that p′ = Sp. Indeed, the scale factor σ and the rotation angle θ in

Eq. 1 can be obtained as:

σ =
||p′||
||p||

(2)

θ = − tan−1

(
y′

x′

)
− tan−1

(y
x

)
. (3)

Once the random similarity map S is generated as above, its inverse S−1 is

used to scale and rotate Nd and obtain N̂d, such that a point p′ ∈ Nd is

coincident with p ∈ N̂d. A patch of 128× 128 pixels is then extracted from

both Fd and N̂d, with its top-left corner in p. The extracted pair of patches

is finally stacked along with the channel dimension and given as input to the

net, with a label representing the random shift ∆. In our implementation,

both δx and δy are randomly sampled in the interval [−32,+32] pixels. With

this sampling interval, we experimentally measured that the covered set for

7



Figure 1: Patch extraction to create examples. Given a fingerprint Fd and a residual noise

Nd a random point p is selected. Then, p is perturbed with a random shift ∆, so to

obtain p′. From p and p′ a transformation matrix S can be defined, such that p′ = Sp.

The inverse transformation S−1 is used to compute the transformed version of Nd, i.e.

N̂d = S−1Nd, such that in N̂d the point p′ gets the same coordinate of p in Nd. Finally,

two 128 × 128 patches are extracted — one from Fd and the other from N̂d — and then

stacked together to build an example to be passed to the net, with label ∆. (Best viewed

in color and zoomed in)

σ and θ are respectively [0.85, 1.15], and [−0.15, 0.15] degrees. The choice of

parametrizing the similarity transform using the shift vector ∆ is inspired

by [35], where a 4-point parametrization was used in order to model the

8 degrees of freedom of a general homography. Note that, in this work, a

1-point parametrization is sufficient to cover the 2 degrees of freedom of S.

Fig. 1 depicts the example generation process.

3.2. CNN Implementation

In this section implementation details of the proposed approach are given.

Before extracting the patches as described above, the PRNU signals are

individually normalized to have zero mean and unit variance. Moreover,

natural images whose unaltered residual noise obtains a low PCE score are

discarded, as they may make less reliable the comparison against the device
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Figure 2: Convolutional network architecture.

fingerprint.

The used convolutional network is schematically reported in Fig. 2. It

takes as input patches of 128×128×2 pixels and is composed by four convo-

lutional blocks followed by two dense layers. Each of the first two convolu-

tional blocks include two convolutional layers with 64 3×3 filters, with stride

1 and ReLU activations. After each convolutional layer batch normalization

is applied, and finally a max pooling operation with 2×2 filters and stride 2

is used. The last two convolutional blocks use layers with 128 3×3 filters. In

particular, the last convolutional block does not have a max pooling stage:

Its output is first flattened to a 1024 vector, and, after a dropout stage with

a probability of 0.5 (only during training), goes through two dense layers,

the first with 1024 units and the second and last with only two output units,

predicting the 2D shift vector ∆ = (δx, δy).

Although several loss and optimization functions have been applied in

CNN architectures in the literature [36, 37, 38], they have not been preferred

in this work due to their computational complexity. The net was trained

using stochastic gradient descent with momentum 0.9 and an initial learning

rate of 0.005, that was progressively reduced by 1/10 every four epochs.

The loss function was the Euclidean distance between the predicted and the

ground truth shift vector ∆, as already done in [33]. Training went on for

15 epochs, evaluating 500,000 examples per epoch fed to the net in batches
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of 50 examples. At the end of each epoch, 20,000 validation examples were

used to control overfitting and possibly perform early-stopping.

3.3. Camera Identification

Once trained, the net presented above can be used as a pre-processing

step for the camera identification task. Typically, the camera identification

based on PRNU analysis is solved by simply evaluating the PCE between

the fingerprint signal of a device and the residual noise extracted from a

probe. Even a slight de-synchronization of the two signals (due to rotation or

scale changes) would dramatically reduce the PCE value under the ‘classical’

thresholds (i.e., 60 and 100), thus spoiling camera identification. As an

example, in Fig. 3a a pristine natural image is shown: the PCE between

its residual noise and the device fingerprint reaches a value of 12,836.27. In

Fig. 3b the same image is shown after being subjected to a scale factor of

1.01 and a rotation of 0.001 degrees: while the transformation is practically

imperceptible, its PCE reaches a value of 36.95 only (with a reduction of

more than 99%!), resulting in a false negative camera attribution.

To mitigate the risk of missed attributions, our net can be used to pre-

process a given fingerprint-residual noise pair by estimating the scale and

rotation parameters applied to the probe image (and consequently to the

residual noise). The estimated parameters can then be used to register the

residual noise w.r.t. the fingerprint, thus re-synchronizing the two signals

and eventually obtaining a reliable value for the PCE (see Fig. 4). As shown

in the experimental section, if the fingerprint and the residual noise come

from the same device, the PCE value computed after the registration is

higher than any sensible threshold with a high probability, while if the two
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(a) (b)

Figure 3: In (a) a natural image from device D01 of VISION dataset. The PCE between

its residual noise and the D01 fingerprint returns a score of 12836.27. In (b) the same

image after been subjected to a scaling (σ = 1.01), and a rotation (θ = 0.001). The

resulting image do not show any particular differences w.r.t. the original, however its PCE

score drops to 36.95, spoiling any possible device attribution.

PRNU are extracted from different devices, the transformation estimated

from the network is typically not sufficient to obtain a high PCE score,

thereby avoiding to introduce false positives.

4. Experimental analysis

4.1. Dataset

To train the net and evaluate the proposed approach we used the recently

proposed VISION dataset [19]. This dataset includes still images and videos

recorded from 35 smartphone devices, covering 29 different models from 11

manufacturers. For each device, flat-field (i.e., planar, monochromatic) and

natural images are available, for a total of 4167 flat-field and 7565 natural

images.

4.2. Training

In order to compute a strong fingerprint of each device, all the available

flat-field images taken with it were used. The natural images taken with
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Figure 4: Proposed camera identification pipeline. A pair of corresponding patches are

sampled from both PRNU signals and given as input to the CNN to estimate the probe

transformation parameters σ, θ. The probe is resynchronized w.r.t. the fingerprint. Finally,

PCE is normally evaluated to decide the probe attribution.

the same device were divided into three sets: training (using 70% of the

probes), validation (10%), and test (20%). Then, 500,000 examples were

generated from the training set, following the method described in Sect. 3.1,

and 20,000 from the validation set. Test examples were instead generated at

runtime from the remaining test set1. A different net was trained separately

for each selected device, evaluating 15 epochs with batches of 50 examples,

repeated 10,000 times (so as to observe all 500,000 examples for each epoch).

At the end of each epoch, 20,000 validation examples were used to control

overfitting and possibly perform early-stopping.

4.3. Results

4.3.1. Performance measure

Since the aim of this method is to solve the camera identification task

when the probe has been modified by a scale and rotation transform, the

1Note that, in the VISION dataset, some of the acquired devices are of the same model

(e.g. D02 and D10 are both Apple iPhone 4s): in this case, we selected for training and

testing the device with the highest number of available probes (i.e., between D02 and D10,

we used the former, since it has more natural images available).
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performance of the method was assessed by evaluating the PCE between the

fingerprint and the registered residual noise (using the scale and rotation

parameter predicted by our net) and then counting how many test cases

obtained a PCE score higher than the two thresholds 60 and 100. The higher

is the number of passed tests, the more reliable is the net.

4.3.2. Single device attribution

The first test was devoted to assess the ability of the net in recognizing

a transformed probe coming from a single device. In practice, after having

trained the net on data coming from a single device, for example D01, in

the test phase the net is evaluated on data coming only from D01. For each

device/net pair, we created 1000 test samples using the same procedure de-

scribed in Sect. 3.1 applying different scales and rotations randomly selected

at runtime. The predicted ∆ was then used to define (using eqs. 1–3) a

similarity transform, which in turn was used to register the residual noise on

the fingerprint. Then PCE was evaluated and a positive result was recorded

whenever its value was higher than τ60
.
= 60 or τ100

.
= 100. Table 1 shows

the results thus obtained: In most of the cases, more than 80% of the test

probes were correctly identified, with an average of 84,62% for τ60, and of

81,22% for τ100.

Since VISION includes multiple devices of the same model, we tested

how a net trained on one device would work on probes coming from another

device of the same model. In particular, we evaluated the net trained on D01

on transformed probes coming from D26, another Samsung Galaxy S3 Mini.

The percentage of correct detection was, in this case, respectively 38.7% with

τ60, and 33.1% with τ100. Similarly, testing the D15 net on D06 probes (both
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Table 1: Results on single device attribution for 1000 test example, using τ60 = 60 and

τ100 = 100 as thresholds on the PCE score.
Device τ60 τ100

D01 - Samsung Galaxy S3 Mini 87.6% 84.3%

D02 - Apple iPhone 4s 60.2% 51.9%

D03 - Huawei P9 59.5% 52.3%

D04 - LG D290 71.0% 64.1%

D05 - Apple iPhone 5c 90.9% 88.9%

D07 - Lenovo P70A 91.4% 88.6%

D08 - Samsung Galaxy Tab 3 82.4% 79.0%

D09 - Apple iPhone 4 93.6% 92.2%

D11 - Samsung Galaxy S3 83.6% 80.1%

D12 - Sony Xperia Z1 Compact 86.0% 83.5%

Device τ60 τ100

D13 - Apple iPad 2 89.7% 87.8%

D15 - Apple iPhone 6 88.5% 85.1%

D16 - Huawei P9 Lite 86.4% 84.6%

D17 - Microsoft Lumia 640 LTE 91.5% 90.2%

D19 - Apple iPhone 6 Plus 89.2% 86.2%

D20 - Apple iPad Mini 92.4% 91.2%

D21 - Wiko Ridge 4G 68.4% 60.0%

D22 - Samsung Galaxy Trend Plus 91.9% 90.1%

D23 - Asus Zenfone 2 Laser 92.5% 90.9%

D24 - Xiaomi Redmi Note 3 79.1% 74.2%

Device τ60 τ100

D25 - OnePlus A3000 85.3% 82.3%

D27 - Samsung Galaxy S5 84.6% 81.4%

D28 - Huawei P8 84.5% 81.5%

D29 - Apple iPhone 5 86.8% 83.7%

D30 - Huawei Honor 5c 91.0% 88.0%

D31 - Samsung Galaxy S4 Mini 83.5% 79.8%

D32 - OnePlus A3003 88.1% 85.1%

D33 - Huawei Ascend 81.2% 77.7%

D35 - Samsung Galaxy Tab A 93.1% 90.8%

Apple iPhone 6) yielded 18.1% with τ60, and 14.2% with τ100. These results

suggest that the net is able to capture PRNU characteristics that are specific

to a given individual device, and can therefore discriminate well between two

devices sharing the same model. Such net selectivity helps to keep low the

number of false positives, as will be shown in the next Section, reporting

experiments on multiple device attribution.

4.3.3. Multiple device attribution

In this second test the performance of the trained networks in a multiple

device attribution setup was assessed. Given a set of devices for which both

the fingerprint and the trained net are available, this test evaluates the net’s

capability at selecting the correct source device for a scaled and rotated probe

coming from any of the devices in the considered set. To accomplish such

objective, the probe is compared against all the devices by firstly passing

through the specific net to recover the transformation parameters, and then

computing the PCE between the fingerprint and the registered residual noise.

In this way, both True Positive (TP) and False Positive (FP) rates can be

evaluated. For each considered device, 10 probes were selected and each
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probe was randomly transformed using 10 different scales and rotation angles,

thereby obtaining 100 test cases for each device. This resulted in a total of

2900 test examples for the 29 devices from the VISION dataset. For each

test example, 29 different PCE scores (one for each device in the dataset)

were obtained.

Fig. 5a shows the confusion matrix obtained when a single patch from

the probe image was randomly selected and the threshold was τ60. The entry

(i, j) of this matrix indicates how many times a probe from device i was

attributed to device j (i.e., the jth PCE score was maximum among the 29

PCE scores computed). As a result, the TPs and FPs are respectively the

diagonal (i= j) and extra-diagonal (i ̸= j) entries of the matrix. If none of

the 29 PCE scores was above the threshold, the probe was labelled as Not

Assigned (NA) (this is why the matrix rows can add up to a number less

than 100, which is the number of test cases for each device). Averaging the

results over all devices, the performance using a single patch and τ60 was

72.0% TP, 5.3% FP, 22.7% NA. While the ratio between TP and FP is not

at all bad, the single patch strategy for device attribution gives rise to a

relatively large number of NA. Hence, in order to improve the performance,

alternative device attribution strategies were devised and tested.

Triple patch strategy. Instead than using a single patch, three patches for

each probe are extracted and evaluated. All the three patches are then

passed to the nets and three distinct PCE scores are computed. Finally, the

highest PCE among the three is selected. As can be seen in Fig. 5b, using

this approach gives better results than with a single patch. The average

percentages over all devices are respectively 87.4% TP, 4.5% FP, 8.1% NA.
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Figure 5: Confusion matrices for multiple device attribution using τ60 (see text for details):

(a) results for single patch sampling, and (b) results for triple patch sampling strategies.

(Best viewed in color and zoomed in)

It can be noticed that the number of NA probes was significantly reduced.

However this strategy is three times slower than the single patch approach.

Multi-patch statistical analysis. Since the forward pass of the net used to

retrieve the transformation parameters is very fast compared to the time

required to compute the PCE, alternative strategies can be designed based

on a statistical analysis of the prediction results obtained with a large number

N of input patches extracted from the probe at hand. Each patch is analyzed

by the net and the scale and rotation parameters are recorded. This gives

rise to two sets of N elements: S, with all the estimated scales and R, with

the rotation angles. Then, robust statistical measures M are applied to S

and R in order to extract a single pair of scale and angle estimates (σ̂, θ̂)

that summarize the entire set of N patches. In particular, two measures

were tested: the univariate median Mu, and the geometric median Mg.
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Figure 6: Confusion matrices for multiple device attribution using τ60 and the univariate

median strategy (Mu) (see text for details). In (a) results with 100 patches, and in (b)

for 1000 patches. (Best viewed in color and zoomed in)

Using the former, scale and rotation angles are used separately, i.e. σ̂ =

Mu(S) and θ̂ = Mu(R). Differently, when using the geometric median the

two sets are considered jointly, i.e. (σ̂, θ̂) = Mg(S,R). Once obtained the

(σ̂, θ̂) parameters, a similarity transform is defined to register the probe,

and a single PCE is evaluated, thus reducing the overall computational time

w.r.t. the triple patch strategy. Results for the univariate median are reported

in Fig. 6a for N = 100, and in Fig. 6b for N = 1000. Similarly, Fig. 7a

and Fig. 7b report respectively the results for the geometric median with

N = 100 and N = 1000 patches. The two statistical measures yield similar

results, with slightly lower FPs but also with lower TPs and higher NAs

w.r.t. the triple patch strategy. Moreover, the univariate median obtains the

same results using 100 or 1000 patches, while the geometric median slightly

improves as the number of patches increases.
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Figure 7: Confusion matrices for multiple device attribution using τ60 and the geometric

median strategy (Mg) (see text for details). In (a) results with 100 patches, and in (b)

for 1000 patches. (Best viewed in color and zoomed in)

The results obtained with τ100 with all stretegies are reported in Tab. 2.

The table shows only the diagonal entries of the confusion matrix, since with

this higher threshold almost all false positives are correctly filtered out (the

few residual FPs appear in brackets). However, as expected, by increasing

the threshold, more NAs and less TPs are obtained. In general the triple

patch strategy is the best performing, obtaining the highest TPs for 26 out

of 29 devices. However, for D03, D04, and (less significantly) for D15, multi-

patch approaches achieved higher scores. Note that a similar behaviour for

D03 and D04 is found also for τ = 60. This is probably due to the peculiar

characteristics of these devices, where the intensity of the PRNU is likely

not uniform throughout the image. Hence, by sampling a larger number

of patches, there is a higher probability to select a meaningful patch over

which correct transformation parameters can be estimated. This hypothesis
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Table 2: Correct detection rate for the multiple device attribution test, using τ100. In bold

the highest rate for each device. In brackets are reported the false positives. Note that,

D07 is confused with D13 both for the Single patch sampling and the Geometric Median

with 100 patches (M100
g ).

D01 D02 D03 D04 D05 D07 D08 D09 D11 D12 D13 D15 D16 D17 D19 D20 D21 D22 D23 D24 D25 D27 D28 D29 D30 D31 D32 D33 D35

Single 77 49 38 40 85 72 (1) 80 84 54 73 85 65 74 77 76 83 56 79 70 57 63 72 73 62 84 72 83 60 72

Triple 90 67 66 66 92 85 90 91 78 93 91 82 89 88 92 91 80 89 84 81 84 89 92 92 90 88 92 86 82

M100
u 86 62 78 72 90 81 84 86 78 89 90 84 89 82 80 84 78 87 80 79 76 85 88 89 88 80 87 81 77

M1000
u 86 62 78 72 90 81 84 86 78 89 90 84 89 82 80 84 78 87 80 79 76 85 88 89 88 80 87 81 77

M100
g 86 63 79 73 89 82 (1) 84 86 78 89 89 85 89 82 80 82 78 87 80 80 74 86 88 87 88 80 87 81 77

M1000
g 85 63 79 72 89 82 86 85 77 89 89 84 87 82 81 84 79 88 79 81 76 86 89 86 89 80 87 80 77

however would require a deeper analysis that is out of the scope of this paper

and will be left for future investigations.

Table 3 summarizes the results obtained with the different device attribu-

tion strategies, using both the thresholds τ60 and τ100. Results are expressed

in percentage w.r.t. overall number of test examples. TP columns were ob-

tained by accumulating the values in the diagonal of the confusion matrices,

FP columns those in the non-diagonal entries. NA columns take into ac-

count the probes that were neither TPs nor FPs. Whatever the thresholds,

the worst performing strategy is the single patch strategy, which can be as-

sumed as the baseline of the method. With τ60, the best performing strategy

in terms of both TP and NA percentage is the triple patch strategy (87.4%

and 8.1% respectively), followed by the geometric median using 1000 patches

(84.2% and 12.4%). The latter strategy also has the best performance on FPs

(3.4%). The second best on FPs is the univariate median, whose performance

is the same with either 100 or 1000 patches. Concerning τ100, all the strate-

gies obtain negligible FPs, at the expense of lower TPs and higher NAs. The

triple patch strategy is confirmed as the best of all, while the strategies based

on robust statistics have almost identical, suboptimal performances.
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Table 3: Resume of the multiple device attribution using different strategies, for τ60 and

τ100. Results are expressed as percentage; in brackets we reported the number of FP when

0.0% are achieved but some false positive still happen.
τ60 τ100

TP FP NA TP FP NA

Single 72.0% 5.3% 22.7% 69.5% 0.0% (1) 30.5%

Triple 87.4% 4.5% 8.1% 85.5% 0.0% 14.5%

M100
u 84.1% 3.5% 12.4% 82.4% 0.0% 17.6%

M1000
u 84.1% 3.5% 12.4% 82.4% 0.0% 17.6%

M100
g 83.9% 3.8% 12.2% 82.4% 0.0% (1) 17.6%

M1000
g 84.2% 3.4% 12.4% 82.4% 0.0% 17.6%

In order to get an insight into the results for any possible value of the

threshold, the Receiver Operating Characteristic (ROC) curve and the rel-

ative Area Under the Curve (AUC) obtained with the different approaches

were also computed. For this experiment, the 2900 PCEs computed for all

the test examples (and not only the maximum PCE for each test example, as

done before with confusion matrices) were used, together with the true device

attribution labels. As can be seen in Fig. 8a, all the strategies show good

performance with a high TP rate (greater than 0.7) even at extremely low

FP rates. Among the proposed strategies, triple patch sampling is confirmed

as the best performing one with an AUC of 0.926, followed by the robust

statistic strategies that achieve similar results, with AUCs higher than 0.9.

The baseline single patch sampling, with an AUC of 0.832, is the fastest but

also the worst performing among the tested strategies.

4.4. Comparative evaluation

The proposed solution was compared against the brute-force search ap-

proach [18], the particle swarm method presented in [24], and the solution
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(a) (b)

Figure 8: (a) ROC curves for multiple device attribution using our net and the six different

strategies on 29 devices of the VISION dataset. (b) ROC curves comparing our approaches

w.r.t. brute force method, particle swarm solution, and SCV4SSV, using three devices

(D01, D02, and D04). AUC values are reported in the plot legends. (Best viewed in color

and zoomed in)

presented in [25] (that will be indicated as SCV4SSV).

For the brute-force case, given a probe, all the combinations of scales and

rotation angles are evaluated by first registering the probe and then comput-

ing the PCE. The scale-angle pair obtaining the maximum PCE score is then

selected. In order to be fair, we limited the search space to the values covered

during the training of the net, i.e. [0.85, 1.15] with steps of 0.01 for the scale,

and [−0.15, 0.15] degrees with steps of 0.01 for the rotation angle. Concern-

ing the particle swarm, we adapted the source code released by the authors

in order to work on single images instead than on video frames. Differently

from the brute-force approach, this method performs a smarter search of the
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Figure 9: Confusion matrices comparing the performance of the brute force approach with

τ60 (a) and with τ100 (e). Similarly, in (b) and (f) are shown the results of the particle

swarm method, and in (c) and (g) results for SCV4SSV, while in (d) and (h) results with

our single patch strategy are reported. The Predicted Class run along the columns, while

the True Class along the rows. (Best viewed in color and zoomed in)

parameters by exploiting the particle swarm optimizer, that in each itera-

tion focuses parameter search on the most promising particles. In our tests

we used the default parameters selected by the authors, i.e., the maximum

number of used particles Np = 50 and the maximum number of iterations

maxit = 50 (see [24] for further details). As with the brute-force, also for the

particle swarm we limited the search space to [0.85, 1.15] for the scale, and to

[−0.15, 0.15] degrees for the rotation angle. SCV4SSV was also tested using

an adaptation of the authors’ source code to make it work on single images

instead than on video frames. Once obtained the PRNU of the transformed

probe, it is centrally cropped with a fixed window. Then, candidate transfor-

mations are searched for. To avoid extreme interpolation effects, the authors
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select a sub-set of transformation such that the shift of corner pixels of the

cropped PRNU are limited in a given window. Moreover, to speed up the

search, two solutions are provided: the Three-Level Hierarchical Grid Search,

and its constrained version (which is the one implemented in the code). Fi-

nally, a validation procedure is carried out to exclude transformations not

satisfying three user defined thresholds, namely PCEvld, nsub, and PCEsub

(see [25] for details). In order to select an appropriate value for last three

thresholds, several trials were performed. Using the values provided in the

code, i.e. PCEvld = 42, nsub = 2, and PCEsub = 2, only 13% of probes

were analysed. The best performances were achieved using PCEvld = 42,

nsub = 1, and PCEsub = 2, however 70% of probes were still discarded. In

order to be fair with the other methods, that do not discard any probe, we

decided to show results for the best performing trial where all the probes

were analysed: This output was obtained by setting PCEvld = 21, nsub = 0,

and PCEsub = 1, with a minimal performance loss w.r.t. the best setup (the

difference between their AUCs was 0.045 only).

Note that the high number of PCEs to be evaluated—by all the compared

methods, in particular by the brute-force—is a strong limitation, since it

requires huge computational times, so in this test we were forced to limit the

analysis to only three devices. As done in the previous tests, 100 test cases for

each device were considered. In Fig. 9 confusion matrices obtained with τ60

and τ100 are shown for the brute-force approach (Fig. 9a and 9e), the particle

swarm method (Fig. 9b and 9f), SCV4SSV (Fig. 9c and 9g), and our single

patch sampling, limited to the three devices considered (see Fig. 9d and 9h).

As can be seen, our method, despite using the worst among the proposed
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strategies, obtains similar or better results in terms of TPs, FPs and NAs

than its competitors. Indeed, using τ60, our solution achieves 178(60%) TPs,

0 FPs and 122(40%) NAs, brute-force achieves 174(58%) TPs, 35(12%) FPs

and 91(30%) NAs, particle swarm achieves 174(58%) TPs, 5(1.7%) FPs and

121(40.3%) NAs, and SCV4SSV obtains 72(24%) TPs, 0 FPs and 228(76%)

NAs. Results with τ100 are even more favourable toward our approach, that

obtains 166(55%) TPs, 0 FPs and 134(45%) NAs, against 114(38%) TPs, 0

FPs and 186(62%) NAs of brute-force search, 163(54.3%) TPs, 0 FPs and

137(45.7%) NAs of particle swarm optimization, and 47(15.7%) TPs, 0 FPs

and 253(84.3%) NAs of SCV4SSV.

Fig. 8b shows the ROC curves and the related AUCs for all the proposed

strategies, the brute-force method, the particle swarm optimizer, and the

SCV4SSV approach (for the three devices considered). All the evaluated

methods obtain better results than the brute-force approach: SCV4SSV

achieves only a slightly improvement w.r.t. the brute-force, while particle

swarm obtains a better AUC, only slightly worse than our single patch solu-

tion. AUCs for our solutions are always higher than those of the compared

methods, with the triple patch strategy achieving the best results overall.

The bad performance of the brute-force approach is, in our opinion, due

to the selected steps on the scales and angles to be tested. Probably, choosing

a finer step would increase the performance, since there would be a higher

probability to select the exact scale-angle pair used to warp the probe. How-

ever, reducing the step would also increase dramatically the number of trials

to be carried out, and as a consequence the computational time, to a point

that the problem would become intractable. Relating the AUC with the re-
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sults shown in Fig. 9c and 9c, SCV4SSV seems to output low PCE scores,

but it is able to provide relatively higher PCEs when comparing the residual

noise of the correct device with its fingerprint, such to obtain a better AUC

score w.r.t. the brute-force. On the other hand, the particle swarm approach

is able to better identify the correct scale and angle parameters, since it fo-

cuses on the more promising parameters with an optimization strategy. Note

that the particular transformation search strategies adopted by the particle

swarm and SCV4SSV, not only provide better results, but also reduce the

computational times considerably w.r.t. the brute-force. Still, our solutions

achieve the best performance, since the trained nets are able to recover the

transformation parameters both reliably and with extremely reduced com-

putational times—as shown in the next Section.

4.4.1. Computational times

The computational times (expressed in seconds) for the proposed ap-

proaches, the brute-force method, the particle swarm solution, and SCV4SSV

are shown in Tab. 4. All times were obtained on a PC equipped with an In-

tel Core i7-8700 CPU@3.20GHz, with 32GB of RAM. The neural net was

implemented in Python using the Tensorflow library and can run either on

an NVIDIA TITAN Xp GPU, with 12GB of RAM, or on the CPU. A single

forward pass on the trained net requires 0.03 seconds, if run on the CPU,

0.002 seconds if run on the GPU. Warping the probe takes around 0.02 sec-

onds, while computing the PCE requires a time proportional to the probe

resolution: In our experiments an average time of 2.8 seconds was required.

The geometric median takes around 0.01 seconds on 100 samples, and 0.4

seconds on 1000 samples. The univariate median takes instead 0.0001 sec-
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Table 4: Estimates of computational times for a single probe evaluation (expressed in

seconds). For each method we reported the number of required operations and the average

time used by each operation; For the net forward pass (and as consequence for the total

times) we reported the GPU time and, in brackets, the CPU time. Total times are obtained

by multiplication and sum of the single operations. Note that, for the Particle Swarm and

SCV4SSV we do not know how many warping and PCE computations have been used, so

we reported the total average time obtained experimentally.
Forward

Pass Time

Forward

Pass Num

Warp

Time

Warp

Num

PCE

Time

PCE

Num

Geom Median

100 Time

Geom Median

1000 Time

Univ Median

Time

Total

Time

Single 0.002 (0.03) 1 0.02 1 2.8 1 — — — 2.822 (2.850)

Triple 0.002 (0.03) 3 0.02 3 2.8 3 — — — 8.466 (8.550)

M100
u 0.002 (0.03) 100 0.02 1 2.8 1 — — 0.0001 3.020 (5.820)

M1000
u 0.002 (0.03) 1000 0.02 1 2.8 1 — — 0.0001 4.820 (32.820)

M100
g 0.002 (0.03) 100 0.02 1 2.8 1 0.01 — — 3.030 (5.830)

M1000
g 0.002 (0.03) 1000 0.02 1 2.8 1 — 0.4 — 5.220 (33.220)

Brute Force — — 0.02 961 2.8 961 — — — 2710.020

Particle Swarm — — 0.02 n.a. 2.8 n.a. — — — 1022.231

SCV4SSV — — 0.02 n.a. 2.8 n.a. — — — 122.939

onds, both for 100 and 1000 samples. The brute-force approach tested 31

values both for the scale and angles (using the limits and the steps defined

above), for a total of 31× 31 = 961 tries. The particle swarm and SCV4SSV

also performed multiple tests, however since their exact number is unknown,

only the time required to evaluate a probe can be appreciated.

As can be seen in Tab. 4, the brute-force approach has extremely high

computational times, due to the computation of 961 warps and PCEs. Par-

ticle swarm, using a smarter search of the registration parameters, is almost

three times faster, and SCV4SSV, by carefully selecting which transforma-

tions to evaluate, works almost thirty time faster than brute-force. Our

methods are way faster than their competitors, using only a few seconds per

probe, especially if the GPU is available. Obviously, the three patch sam-

pling is the most computationally demanding solution, since it requires the
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evaluation of three PCEs. However, if no GPU is available, the evaluation of

1000 patches (for both M1000
u and M1000

g ) is the most time consuming step.

4.4.2. Ablation study

Different net architectures were experimented in order to assess the best

model to be used. In particular, an attempt was done to remove the max

pooling operation after each convolutional block or replace it with the av-

erage pooling operation to assess if removing or changing the interpolation

of the feature map could bring some positive effects. Deeper and wider net

architectures were also tested by including additional convolutional blocks or

by increasing to 128 the number of kernels in the first convolutional blocks.

However, none of these changes improved significantly the results, so they

were dropped, as they required higher training times, given the increased

number of parameters to be tuned.

To gain a better understanding of the proposed approach, the relation be-

tween the transformation parameters (i.e., scale and angle) and the obtained

PCE score after probe registration was also analyzed. To this aim, the re-

sults of Sect. 4.3.3, limited only to the cases where probe and reference come

from the same device, were considered, and all the ground truth scales and

angles and the respective PCE scores obtained with our six strategies (i.e.

Single, Triple, M100
u , M1000

u , M100
g , and M1000

g ) were retrieved. In Fig. 10 for

each scale-angle pair the achieved results are shown, divided in three classes:

(i) PCE < τ60 (red crosses), (ii) τ60 ≤ PCE < τ100 (blue crosses), (iii) PCE

≥ τ100 (green crosses). As can be noticed, stronger transformations on the

marginal sides of the plots are those that achieve lower PCEs, hence are the

most difficult cases. Notice also that, while in the single patch cases (Fig. 10a
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Figure 10: Relation between the transformation parameters and the obtained PCE score.

In all the plot, red crosses indicate PCE score inferior to 60, in blue if the PCE is between

60 and 100, in green PCE score higher than 100. Plots on the top row show the full

parameter space, while on bottom a zoomed version (corresponding to the black bounding

boxes) is presented. (a) and (g) are for the single patch case, while the triple patch case

in shown in (b) and (h). Similarly, (c) and (i) are for M100
u ; (d) and (j) are for M1000

u ; (e)

and (k) for M100
g , and finally (f) and (l) for M1000

g . (Best viewed in color and zoomed in)

and 10g), some red crosses can be found also near the centre of the plots,

with the other strategies most of the red crosses change to blue or green.

Similar conclusions can be drawn observing the 3D plots of Fig. 11. In

this case the obtained PCE scores are used directly (without quantization)

as real values, in order to obtain a 3D surface plot. Higher PCEs are found

near the center where the transform is close to the identity (i.e., unit scale

and zero angle).

5. Conclusions

In this paper we presented a novel approach to solve the camera identifi-

cation task when the probe image has undergone a scale and rotation trans-
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(a) (b) (c)

(d) (e) (f)

Figure 11: Relation between the transformation parameters and the obtained PCE score

presented as a 3D surface plot. (a) is for the single patch case, while the triple patch case

in shown in (b). Similarly, (c) is for M100
u ; (d) for M1000

u ; (e) for M100
g , and finally (f) for

M1000
g . (Best viewed in color and zoomed in)

formation. Differently from the state of the art solutions, our methods do

not test a high number of different registration possibilities. Using a trained

convolutional network the proposed method is able to estimate sufficiently

correct transformation values so as to let the correlation based PCE to work

reliably. Several experiments carried out on a recent dataset of smartphone

devices show the effectiveness of the proposed solution, both when focusing

on a single device or working on multiple device attribution. In particular,

the high true positive and the low false positive rates guarantee that our

method can be used reliably in practical application scenarios. Moreover, at

the cost of spending time to train the nets, the proposed solution, at test
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time, can output the registration parameters in just a few seconds, strongly

reducing the time requirements w.r.t. the compared solutions, thus being par-

ticularly useful to analyze datasets with a huge number of probes. The main

drawbacks of the proposed approach are two. Firstly, at this moment the

approach was trained to reliably estimates similarity transformations only:

An extension to deal with more general transformations (e.g., homographies)

is planned for future development. Secondly, it requires to perform as many

training sessions as the number of the distinct devices to test. However, this

limitation is not so impacting on the method performance, since it has to be

done only once, in an offline and automatic mode.

In future work, our single image approach will be extended to image

sequences in order to work also with digitally stabilized videos. Also the

introduction of correlation measures into the network loss function should be

considered in order to better train the net for the specific problem of PRNU

matching.
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