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Abstract. We present a tool for the acquisition of 3D textured models
of objects of desktop size using an hybrid computer vision framework.
This framework combines active laser-based triangulation with passive
motion estimation. The 3D models are obtained by motion-based align-
ment (with respect to a fixed world frame) of imaged laser profiles back-
projected onto time-varying camera frames. Two distinct techniques for
estimating camera displacements are described and evaluated. The first is
based on a Simultaneous Localization and Mapping (SLAM) approach,
while the second exploits a planar pattern in the scene and recovers
motion by homography decomposition. Results obtained with a custom
laser-camera stereo setup — implemented with off-the-shelf hardware
— show that a trade-off exists between the greater operational flexibil-
ity of SLAM and the higher model accuracy of the homography-based
approach.

Keywords: 3D Reconstruction, Active Triangulation, Motion Estima-
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1 Introduction

Visual reconstruction of 3D object shape is typically accomplished through ei-
ther active or passive methods.
Active methods rely on the observation of a light pattern while it interacts
with the scanned object [1, 2]. Accurate models are obtained also for texture-
less objects, working in structured conditions with sophisticated hardware and
relatively simple algorithms. In [3], the authors use a pattern with several light
stripes arranged in a regular way; object shape is obtained through the so called
active triangulation approach of single image points. In [4, 5] two 3D reconstruc-
tion approaches based on active triangulation of a hand-held laser device are
described. The former uses a laser blade and requires a background with known
geometry to simultaneously estimate the laser plane equation and reconstruct
small-size objects. The latter — used also to reconstruct room-size environments
— uses an ad-hoc pointer array device and requires an initial calibration step. A
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different approach, called active rectification and based on image warping trans-
formations of entire laser profiles, is described in [6].
Passive methods use only unstructured illumination, and focus instead on low
cost hardware and sophisticated software, by which a reasonable accuracy and
a high flexibility can be obtained. Typical passive approaches encompass multi-
view reconstruction from either image collections [7, 8] or image sequences [9],
real time stereo [10] and shape from shading [11].
In [12], an active/passive method is presented where cast shadows produced with
a wand are used instead of projected light. Another hybrid approach extending
standard shape from shading is photometric stereo [13], where a collection of
photos of the object is taken from a single viewpoint by varying the light source.

Fig. 1. The camera-laser group for free-hand 3D acquisition.

In this paper, a hybrid solution to the 3D reconstruction problem is proposed,
where classical active triangulation based on a single laser stripe is combined with
a passive technique for motion estimation. System operation is performed with
the device shown in Fig. 1, composed of a laser illuminator and an off-the-shelf
camera kept in a fixed relative position. The device is moved manually in front
of the object to reconstruct. As with the other hybrid active/passive approaches
mentioned above, ours combines good accuracy and flexibility of use. Note that,
unlike other hand-held acquisition systems, both the camera and the laser are
moved during the scanning. Motion estimation is carried out with two different
approaches. The first one is based on Simultaneous Localization and Mapping
(SLAM). The second one relies on tracking of a checkerboard pattern in the
scene and planar homography decomposition.

In the next Section, a general description of the approach is given. Then
Sect. 3 and 4 discuss respectively the SLAM and the homography-based motion
estimation approaches. In Sect. 5, a comparison between the motion estimation
strategies is addressed, and experimental results are given. Finally, conclusions
and directions for future work are discussed in Sect. 6.
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Fig. 2. An example of the device layout while scanning an object. C is the camera
center, Λ the laser plane, Γ the 3D laser trace and γ the 2D laser image.

2 The Approach

Figure 2 shows the basic projection geometry of laser profile Γ onto the image.
At any time t, each point x of the imaged laser profile γ can be backprojected
onto the laser plane Λ, thus obtaining its pre-image X ∈ Γ . The backprojection
equation can be expressed as

cX̃ =
dΛ

n>ΛK
−1x

K−1x , (1)

where n>Λ
cX̃ − dΛ = 0 is the laser plane equation in inhomogeneous camera-

centered coordinates, x is a homogeneous 3-vector, and K is the camera calibra-
tion matrix.

In our approach, object reconstruction is achieved by collating all laser pro-
files into a single 3D model. This is done by expressing all the backprojected
laser profiles in a unique, world-centered reference frame, as

wX̃ = R>t
[
cX̃− tt

]
, (2)

where {Rt, tt} is the roto-traslation of the camera w.r.t. the world reference frame
at time t.

Note that the backprojection map of Eq. (1) does not change with time, since
the camera and the laser are in a fixed relative position. Conversely, the camera-
world coordinate transformation of Eq. (2) is time-dependent, and must be re-
estimated for collating each new laser profile. The approach can be decomposed
into four main phases as follows.

1. System Calibration. This phase is aimed at estimating the matrix K and
the laser plane parameters to be used in Eq. (1) for the purpose of model
building. In this phase, a planar checkerboard pattern is moved by hand in
front of the camera-laser system, which is kept in a fixed position. Camera
calibration is carried out with the method presented in [14]. For the purpose
of laser calibration, a reference frame is attached to the planar calibration
pattern, referred to as π, with the normal of the plane coincident with the
Z axis, so that the plane equation is simply πZ = 0. For each frame, the
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roto-translation {Q,b} such that πX̃ = Q>[cX̃ − b] can be easily obtained
as a sub-product of camera calibration [14]. The time-varying pattern plane
parameters (nπ, dπ) can be then computed as

nπ = q3 dπ = q>3 b , (3)

where q3 is the third column of Q. Once the pattern plane parameters are
computed for all the calibration frames, the set of back-projected laser points
{cX̃i ∈ Λ ∩ π}Ni=1 can be computed using Eq. (1) with (nπ, dπ) in the place
of (nΛ, dΛ). Since the set contains (thanks to the different planar pattern
orientations) at least three non-aligned points, the laser plane parameters
are estimated by solving an over-constrained linear system.

2. Laser Extraction During the reconstruction process the laser profile is auto-
matically extracted from each image. Given the acquisition video we start by
tracking the scanned object using an implementation of the Adaptive Mean
Shift [15] in the HSV color space, so to isolate a region of interest (ROI)
in each video frame. Then the laser search is performed in a color subspace
that depends on the real laser color. For example, using a red laser profiler,
only the red channel of the image is used during the extraction. The result-
ing image is converted into gray levels and the highest intensity pixels are
chosen as laser point candidates. Then the gray image is convolved with a
Sobel filter to enhance the laser stripe edges. Starting from the candidate
pixels, we search the left and right edges of the laser on the filtered image
and only those points surrounded by both edges are kept. Finally a Center
of Mass algorithm [16] is used to achieve subpixel accuracy.

3. Model Building. In this phase the 3D laser profiles are obtained using Eq. (1).
Then, the roto-traslation {Rt, tt} between the world and camera frames is
needed to collate each single 3D profile in an unique reference frame, us-
ing Eq. (2). To estimate the camera-laser group movements, two strategies
have been implemented and tested. In the first case (see Sect. 3) SLAM al-
gorithm is used to recover the roto-traslation at any time. Alternatively, a
homography-based motion estimation algorithm, based on the tracking of a
planar pattern, is used in the second case (see Sect. 4).

4. Texture Acquisition To augment the raw 3D shape model, the texture of the
object is recovered by simply projecting each 3D point back onto the image
plane, and then sampling color at the nearest pixel.

3 SLAM Motion Estimation

SLAM algorithms [17, 18] are mainly used to estimate the camera position in
an unknown environment. Building an incremental 3D representation of the
scene (referred to as map), these algorithms are capable to estimate the camera
roto-traslation exploiting the known 2D-3D correspondences between the images
and the world. In this work a keyframe-based iterative approach, similar to an
incremental structure and motion algorithm, was used. Fig. 3 shows its main
steps.
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Fig. 3. A block representation of the implemented SLAM algorithm.

Between each subsequent video frame a set of 2D matches is obtained, us-
ing an implementation of the KLT tracker [19, 20] and, by linking subsequent
matches, the system is able to group the movements of each 2D point in tracks
— e.g., if A matches with B and B matches with C, than {A,B,C} defines a
track for a single point movements.

Given the calibration matrix K, to estimate the first two camera positions
and to obtain an initial map representation an initialization routine is needed.
To achieve this, the world reference frame is attached to the first camera position
and a second frame, with sufficient baseline, is manually chosen. After robustly
estimating the essential matrix E from 2D correspondences and decomposing it
in {R1, t1} [21], the first two camera matrices are given as P0 = K [I | 0] and
P1 = K [R1 | t1]. Note that to correctly initialize the real scene scale factor and
set the magnitude of t1, a metric reference (here a checkerboard pattern) has
to be visible in the first frames of the sequence. The 3D map is computed by
triangulation, storing in a look-up table the correspondence between a 2D track
and a 3D point. Finally a bundle adjustment [22] optimization is performed. In
this way the system internal state, defined as the camera trajectory and the 3D
map, is initialized.

As time progresses, the internal state grows through a state update routine.
By exploiting the 2D-3D correspondences — easily computed using the updated
2D tracks and the look-up table defined above — the camera matrix at time t
is obtained with a robust implementation of a pose estimation algorithm.

To increase the map and to minimize the estimation global error, at specific
times a frame is chosen as new keyframe. In this case, in addition to the camera
matrix estimation, a new triangulation step is performed, so as to add new 3D
points in the map. All the parameters (the keyframe’s camera matrices and the
map) are then further optimized with a new bundle adjustment iteration.
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4 Homography-based Motion Estimation

In this case, while the camera-laser device is moved to scan the object, a planar
pattern has to be kept still and in view of the camera. This allow us to estimate,
as time goes by, the homography Hπ between the (moving) image plane and
the (fixed) pattern, and eventually compute the roto-traslation {Rt, tt} used in
Eq. (2) for collating profiles. This is done as follows. The homography has the
form

Hπ = µK [r1 r2 tt] , (4)

where Rt = [r1 r2 r3] and µ is an unknown scale factor. Defined Hπ = [h1 h2 h3],
it holds ri = 1

µK
−1hi for i = 1, 2 and tt = 1

µK
−1h3. Now, for the orthonormal-

ity of Rt, the scale factor and the last column of the rotation matrix can be
respectively computed as µ = ‖K−1h1‖ and r3 = r1 × r2.

5 Results

A comparison of the results obtained with the two motion estimation solutions
is given hereafter. Operationally speaking, SLAM is preferable, as it guarantees
a higher flexibility in terms of objects size and choice of viewpoint. In fact the
homography-based solution is more constrained in this sense since users must
take care that the checkerboard patter always remain in view during the acquisi-
tion. However, as evident from the qualitative result of Fig. 4, homography-based
approach outperforms SLAM for what concerns 3D model accuracy. Indeed, as

(a) (b) (c)

Fig. 4. An example of reconstruction obtained with the SLAM (Fig. 4(b)) and the
Homography-based (Fig. 4(c)) solutions.

it’s possible to see in Fig. 5, the SLAM and the homography-based computed
trajectories show an increasing divergence. Motion estimates are initially very
similar but then SLAM performance gradually degrades. The main reason of
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Fig. 5. Results of camera trajectory estimation for the reconstruction of Fig. 4. In
red the trajectory computed with the SLAM algorithm. In black the homography-
based estimated trajectory. As we can see, while the estimation goes on, the differences
between the two trajectories increase. Note that the points on the trajectories are the
camera center positions. Instead the straight lines where no points are drawn represent
sub-sequences where no laser stripe was found over the scanned object and so no motion
estimation was carried out.

this behavior is to be found in the scale factor drift that generally affects single
camera structure and motion algorithms.

More reconstruction tests were carried out with the homography-based ap-
proach. Figure 6 shows the results of the 3D reconstruction algorithm for other
two different objects. To evaluate the accuracy of the reconstructions, we com-
pared the 3D models with several measurements manually done on the real
objects with an high precision caliber. Table 1 reports on the measurements and
errors for the Book object of Fig. 6(a). Table 2 summarizes the accuracy result
in terms of average and maximum error. The results are good and comparable
to other approaches requiring either more constrained acquisition scenarios or
more sophisticated hardware. On the other hand, a closer inspection to Fig. 6
reveals that the acquired 3D models present some gaps, that are mainly due to
the fact that manual operation does not guarantee that all surface points are
illuminated at least once by the laser stripe.

Table 1. Measurements (cm) of the
Book model.

Dim. Real Model Error

Height 22.50 22.13 0.37
Width 14,80 14,71 0.09
Length 2.08 2.38 0.30

Table 2. Average and max errors (cm)
for the Book and Horse models.

Model Avg. Error Max Error

Book 0.25 0.37
Horse 0.23 0.4



8 M. Fanfani, C. Colombo

(a) Example 1: Book

(b) Example 2: Horse

Fig. 6. Reconstruction examples: in the first column the photos, in the second the 3D
models.

6 Conclusions and Future Work

In this work we described a tool based on an active/passive framework for re-
construction of realistic 3D models of limited size objects, and we compared two
motion estimation solutions. System operation includes a simultaneous cam-
era and laser calibration phase, followed by backprojection and collation of all
imaged laser profiles. As shown in Sect. 5, the implemented (mono) SLAM so-
lution, which has been found to be perfectly adequate for augmented reality
applications (see Fig. 7 and its description), appears to be less accurate than the
homography-based approach for 3D reconstruction applications. On the other
hand, the homography-based approach is less flexible than SLAM, but neverthe-
less allows us to obtain good quality models using a very simple procedure and
an inexpensive hardware. The software is currently implemented as a prototype
with partial manual operation — as for example the checkerboard detection step.

Future work will address code optimization — including the removal of all
manual operations — and the development of suitable point cloud densification
strategies aimed at filling the model gaps. In addition a new device with a
stereo pair and a laser emitter is currently under study. Using a stereo approach
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Fig. 7. An augmented reality (AR) application using our SLAM algorithm. The virtual
wire-frame cube undergoes the correct perspective deformations and remains stable
upon the desk. Although the algorithm is the same used for 3D reconstruction, here
the perceived quality of motion estimation is higher. In fact, differently from Fig. 4(b),
the inaccuracies in camera motion estimates do not appear as flaws. This shows that
3D reconstruction requires a higher estimation accuracy than AR to achieve a similar
perceptual quality.

for SLAM is likely to lead to a more robust motion estimation, avoiding any
scale factor uncertainty, and yield an even more efficient an flexible tool for 3D
structure recovery.

Acknowledgements

This work has been carried out during the THESAURUS project, founded by
Regione Toscana (Italy) in the framework of the “FAS” program 2007-2013 under
Deliberation CIPE (Italian government) 166/2007.

References

1. Chen, F., Brown, G.M., Song, M.: Overview of Three-Dimensional Shape Mea-
surement using Optical Methods. Optical Engineering 39 (2000) 10–22

2. Bernardini, F., Rushmeier, H.E.: The 3D Model Acquisition Pipeline. Computer
Graphics Forum 21 (2002) 149–172

3. Rocchini, C., Cignoni, P., Montani, C., Scopigno, R.: A low cost 3D scanner based
on structured light. Computer Graphics Forum 20 (2001) 299–308



10 M. Fanfani, C. Colombo

4. Winkelbach, S., Molkenstruck, S., Wahl, F.M.: Low-cost laser range scanner and
fast surface registration approach. In: Proceedings of the 28th conference on Pat-
tern Recognition. DAGM’06, Berlin, Heidelberg, Springer-Verlag (2006) 718–728

5. Habbecke, M., Kobbelt, L.: Laser brush: a flexible device for 3d reconstruction of
indoor scenes. In: Proceedings of the 2008 ACM symposium on Solid and physical
modeling, New York, NY, USA, ACM (2008) 231–239

6. Colombo, C., Comanducci, D., Del Bimbo, A.: Shape reconstruction and texture
sampling by active rectification and virtual view synthesis. Computer Vision and
Image Understanding 115 (2011) 161–176

7. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a
Day. In: Proceedings of the International Conference on Computer Vision. ICCV
’09, Kyoto, Japan (2009)

8. Farenzena, A.M., Fusiello, A., Gherardi, R.: Structure-and-Motion Pipeline on a
Hierarchical Cluster Tree. In: Proceedings of the IEEE International Workshop on
3-D Digital Imaging and Modeling, Kyoto, Japan (2009)
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