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Abstract—We present an approach for merging into a single
super-image a set of uncalibrated images of a general 3D scene
taken from multiple viewpoints. To this aim, the content of either
image is augmented with visual information taken from the
others, while maintaining projective coherence. The approach
extends the usual mosaicing techniques to image collections with
3D parallax, and operates like a virtual sensor provided with
an enlarged field of view and the capability of seeing through
visual occlusions in an “X-ray” fashion. Fundamental matrices
are used to transfer visual information through the vertexes of
an image graph. A dense stereo paradigm is employed to achieve
photorealism by partitioning image pairs into corresponding re-
gions. Results in oriented projective geometry are then exploited
to both detect and handle occlusions by assessing the visibility
properties of each transferred point.

I. I NTRODUCTION

The availability of large image collections in the web has
paved the way for new computer vision applications. For
example, in [1] is described a vision-based approach for
navigating inside a 3D scene constructed by several hundreds
of images of touristic sites taken from the internet. The visual
information in an image collection of a same 3D scene is
usually highly redundant, since images have a large amount
of overlapping content. In this work, visual redundancy is
exploited so as to augment the visual content of one image
of the collection, referred to asreference, using information
from all the other images. The approach is uncalibrated, fully
projective, and purely image-based (i.e., it does not require any
3D reconstruction). Moreover, no constraints are set on image
acquisition conditions or scene structure. Visual augmentation
has a two-fold meaning, namely (1) to enlarge the field of view
of the original image, and (2) to see through the objects in the
original image, thus visualizing occluded parts of the scene
as it would occur with an “X-ray” view. The work extends
to general 3D scenes with parallax and occlusions the usual
mosaicing techniques based on homography registration [2],
that cannot deal with viewpoint shifts if no constraints areset
on scene structure. Related work has addressed the problem
of synthesizing new views without explicit reconstructionof
the 3D model of the scene. An early contribution on this topic
is [3], where weakly calibrated cameras are employed. Novel
views are rendered up to a projective deformation, that can
be removed if cameras are fully calibrated. Other approaches
to view synthesis employ the plane+parallax representation

[4]. For example, in [5] a virtual 3D camera path can be
synthesized, provided that parallax information can be referred
to the homography of the plane at infinity. The availability
of three or more images has also been exploited for the
purpose of novel view synthesis through trifocal tensors [6],
[7]. Our approach propagates visual information through the
basic tools of epipolar geometry and fundamental matrices.
Building on a basic theoretical result on 4-node/5-edge image
subgraphs established in [8], a graph representation of the
image collection is constructed, allowing us to check visual
transferability onto the reference image by means of an
original graph traversing algorithm. In particular, we illustrate
a method for transferring visual data between image pairs that
do not have an overlapping visual content. This is another
extension to the basic graph-based techniques used to construct
global mosaics, where homographies are propagated through
the graph [9]. An occlusion handling strategy based on results
in oriented projective geometry is also introduced, with the
goal of ensuring photoconsistency by assessing the visibility
properties of each transferred point, and also to allow the
visualization of occluded regions.

II. A PPROACH

Given a collection ofn uncalibrated imagesI1, . . . In of
a 3D scene taken from different viewpoints, let us define an
image graphG = (V,E) with the following properties: (1)
the graph hasn vertexes, each representing a different image
of the collection; (2) two distinct vertexesi ∈ V and j ∈ V

are linked by an edgeǫ(i, j) ∈ E if the fundamental matrixFij
between the corresponding imagesIi andIj is known, or may
be computed. In such a case, vertexesi and j are said to be
adjacentin the graph. Let us also denote asIr the reference
imageonto which all the other images have to be registered.
If i and j are adjacent vertexes, then any pair(ix, jx) of
corresponding points inIi andIj can be mapped ontoIr via
epipolar transfer[3]:

rx = (Fri
ix)× (Frj

jx) , (1)

provided that vertexr is adjacent to bothi andj. In this case,
(i, j) is said to be anr-connected pairof vertexes. Similarly,
k is referred to as anr-connected vertexif it belongs to at
least anr-connected pair.



A. Conditions for point transferability

The simple point transfer mechanism of eq. 1 can only be
employed for vertexes that arer-connected. However,under
certain conditions, a non-r-connected vertexk can be trans-
formed into anr-connected one, even if direct computation
of Frk is impossible—i.e., whenIk and Ir do not have an
overlapping visual content. In such a case,k is said to be
an r-connectable vertex, Frk can be indirectly evaluated by
exploiting information from other parts of the graph and,
hence, points from imageIk can be transferred ontoIr .
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Fig. 1. Connectability with respect to a reference vertexr. (i, j) is an r-
connected pair, whilek is a non-r-connected, yetr-connectable vertex (see
text).

The problem of vertex connectability was addressed from a
theoretical viewpoint in [8], where several graph topologies
were discussed. Here we concentrate on the smallest fully
connectable graph of Fig. 1, and provide for it a convenient and
practical way (not requiring camera matrices and/or other 3D
entities as postulated in [8]) to infer the unknown fundamental
matrix from the known ones.

In the following, we provide a direct geometric construction
for the unknown fundamental matrixrFrk of Fig. 1—to follow
the construction, please refer to Fig. 2. The matrix can be
written asFrk = [rek]×

r
Hπ, whererek is the epipole of view

k in view r, and r
Hπ is any planar homography compatible

with view r. Now, from the 3-view compatibility equations
[10] re⊤k Fri

iek = re⊤k Frj
jek = 0, the epipole can be evaluated

(epipolar transfer) as

rek = (Fri
iek)× (Frj

jek) . (2)

Due to the symmetry of the configuration, the corresponding
epipole in imageIk, ker, can be obtained in a similar way,
by simply switching the indexesr andk.

Concerning the homographyrHπ, this can be obtained from
the correspondence of ther and k views of four points
in a scene planeΠ. A suitable plane can be chosen as
follows. Two of the four correspondences that definer

Hπ

trivially derive from the images of the camera centersCi and
Cj : (rei, kei), (rej , kej). Similarly, a third correspondence is
provided by the epipole pair(rek, ker). Finally, the missing
fourth correspondence can be obtained as follows. Let us
consider a generic pointkx ∈ Ik. This gives rise to the two
epipolar linesilk = Fik

kx ∈ Ii and jlk = Fjk
kx ∈ Ij . Let

us now arbitrarily choose a pointj x̂ ∈ jlk: this determines a
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Fig. 2. The geometry of four views, with the definition of the planeΠ used
for the direct construction of the unknown fundamental matrix r

Frk. (Best
viewed in color.)

unique pointX̂ in space as the pre-image ofj x̂ andkx. In the
imageIi, the epipolar linei l̂j = Fij

j x̂ intersectsilk in ix̂. Π
is defined as the plane througĥX and the two camera centers
Ci andCj . The fourth correspondence can then be chosen as
(rx̂, kx), whererx̂ (i.e., the image ofX̂ on Ir) is obtained as
the intersection of the epipolar linesFriix̂ andFrjj x̂.

B. Graph traversal and epipolar propagation

By the technique above we can check, even without explicitly
computing the associated fundamental matrices, which ver-
texes of the image graph arer-connectable, and are thus us-
able for transferring visual information onto the reference via
epipolar propagation through the graph.After this analysis,
which is based on an iterative graph traversal algorithm, the
fundamental matrices corresponding to the newly added edges
can be estimated and used as expounded in the next section.

Image graph traversal is carried out starting with an input
graph G0 = (V,E0) obtained by linking through an edge
ǫ(i, j) all vertexesi and j for which Fij can be estimated
directly from image point correspondences using standard
algorithms. The output graph isGf = (V,Ef ), where the
set Ef includes, beside all the edges inE0, all the new
edges corresponding to the vertexes that were marked asr-
connectable. The algorithm works as follows. The graph is
traversed starting from ther vertex. For every visited vertex,
r-connectability is tested. If the test is negative, the vertex
is marked as re-visitable, and the visit continues with a new
vertex. If the vertex is found asr-connectable, it is added to
the setΓ of r-connectable vertexes, initially set as empty. The
exhaustive visit terminates when the setWt of the re-visitable
vertexes at iteration timet is identical to the one at timet−1.

Fig. 3 shows a a 5-vertex graph with two missing edges,
corresponding to the two fundamental matrices relating the
rightmost images to the reference image (the leftmost one in
the figure). Such fundamental matrices cannot be computed



by point matching, due to the absence of overlapping visual
content between each of the rightmost images and the refer-
ence. Nevertheless, the algorithm above allows us to assess
the possibility of inferring the missing fundamental matrices,
and hence the transferability onto the reference of overlapping
visual content between the two rightmost images.

Fig. 3. A 5-vertex graph with two missing edges (image pairs have
no overlapping visual content), shown as dashed lines. The corresponding
unknown fundamental matrices can be inferred with the graphtraversal
algorithm expounded in the text, thus allowing image content transfer onto
the reference image on the left. (Best viewed in color.).

III. I MPLEMENTATION

A. Estimation of fundamental matrices

1) Direct estimation with visual overlapping:Automatic
initialization of the image graph relies on direct estimation
of the fundamental matrixFij for all image pairs(Ii, Ij) with
partially overlapping visual content. Visual correspondences
(ix, jx) ∈ Ii × Ij are extracted by SIFT detection and
matching. The RANSAC algorithm is then run in order to
get a robust estimate ofFij using the epipolar constraint
ix⊤

Fij
jx = 0. Following the probabilistic approach used in

[11] for homography validation, but using a more conservative
threshold due to the more delicate nature of fundamental
matrices, the RANSAC output is accepted as a validFij if
at least the 60% of all point correspondences are inliers.

2) Indirect estimation by epipolar propagation:An indirect
estimate of the fundamental matrix between imagesIr and
Ik is obtained for all graph vertexesk ∈ V marked asr-
connectable. The method of construction employed in sub-
sect. II-A to prover-connectability is used here to get a raw
estimate ofFrk as[rek]×r

Hπ. Such a raw estimate is then used
as the first guess solution in an iterative refinement scheme
based on nonlinear optimization, working as follows. Let us
first recall from subsect. II-A that, in order to be classified
asr-connectable, vertexk must has been found adjacent to at
least a pair(i, j) of r-connected vertexes. Hence, we have been
able to estimate bothFik andFjk. Let (kx, ix) ∈ Iik be a pair
of corresponding points chosen in the inlier setIik ⊂ Ik × Ii
obtained in the estimation ofFik. We are now able to map,
via epipolar transfer, the pair(kx, ix) first ontoIr, then onto
Ij , and finally back ontoIk:

rx = (Frk
kx)× (Fri

ix)
jx = (Fjr

rx)× (Fji
ix) (3)

kx̃ = (Fkj
jx)× (Fki

ix)

After transferring in this way all pairs in the inlier setsIik and
Ijk, Frk can be refined by minimizing the following quadratic
cost function:

Ek,(i,j) =
∑

Iik

‖kx̃− kx‖2 +
∑

Ijk

‖kx̃− kx‖2 . (4)

3) Global refinement:Once all computableF ’s have been
obtained, a further global refinement of all estimates is carried
out. The adjustment mechanism is based on the cost function
Ek used in eq. 4. The global error to be minimized is

E =
∑

i, j, k ∈ V,

ǫ(k, i), ǫ(k, j) ∈ E

Ek,(i,j) . (5)

Notice that while in the minimization scheme of eq. 4 only
matrix Frk is updated and the others remain fixed, in eq. 5 all
the fundamental matrices are simultaneously updated at each
step.

B. Dense stereo matching

We have described above how to transfer ontoIr a single
pair of corresponding points of anr-connected pair(i, j). We
address here the problem of obtaining all possible correspon-
dences from image pairs, in order to transfer as many points
as possible onto the reference image. Points that can be put
into correspondence in an image pair are said to bematchable.
First classmatchable points are all the SIFT points used to
estimate the fundamental matrices.Second classmatchable
points can be recovered by guided matching along epipolar
lines [10]. First and second class matchable points can be used
as seeds for a dense matching algorithm [12], based on region
growing, in order to set visually overlapping textured regions
into pointwise correspondence. The output of this algorithm is
a set of new, dense matchable points. Figs. 4(c) and (d) show
(in blue) the matchable points extracted from the image point
pair of Figs. 4(a) and (b).

Matchable points are not the only transferrable points.
Indeed, even image points belonging to untextured image
regions (for which no SIFT matching or other kinds of image
search are possible) can be transferred onto the reference
image, provided that they belong to image regions that are in
correspondence to one another. Region-based correspondence
is implemented as a variant of the pointwise dense matching
algorithm mentioned above. In this variant, region growing
is modified so as to take into account untextured image
regions with uniform color. Figs. 4(e) and (f) show (in yellow)
the points extracted with the above region-based matching.
Transfer of points belonging to uniform regions can be ac-
complished by Delaunay triangulation of the regions (using
matchable points on the region border as triangle vertexes)
and affine mapping of all triangles. The process is illustrated
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Fig. 4. Transferrable points recovered after classification. (a),(b): Input image
pair. (c),(d): Matchable points (in blue). (e),(f): Pointsbelonging to matchable
regions (in yellow). (g),(h): Transfer of uniform image regions (dashed white
line) is done by region triangulation followed by affine triangle mapping. (Best
viewed in color.)

in Figs. 4(g) and (h). Note that only the points belonging to
corresponding uniform regions are transferred.

C. Handling occlusions

The epipolar transfer mechanism of eq. 1 does not provide
any information about the actual visibility of a transferred
point. Hence, in order to preserve photoconsistency, a check
for possible occlusions must be carried out for all points that
are mapped onto the reference. This problem is dealt with
using results from oriented projective geometry [13]. Let us
consider the pointsiy ∈ Ii and jy ∈ Ij , with the same 3D
point Y as pre-image. Similarly, let us consider pointsiz ∈ Ii
andjz ∈ Ij , with pre-imageZ. If Y andZ belong to the same
optical ray fromCr, then they will both be projected onto the
same pointrx ∈ Ir. In order to find which, betweenY and
Z, is closer toCr, and is then visible, we can observe the
relative position assumed by their imagesiy andiz, along the
line ilr = Fir

rx, with respect to the epipoleier (see Fig. 5). If
Cr is in front of thefocal planeΦi, then the unoccluded point
to be transferred is the one closest toier. Conversely, ifCr is
behindΦi, then the right point to transfer is the furthest one
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Fig. 5. Assessing visibility through point ordering in projective oriented
geometry.

from ier. The position of the optical centerCr with respect to
Φi can be estimated through thecheirality χ defined in [10].
This is a signed scalar quantity that can be computed after
recovering the camera matricesPi e Pr from Fri. If χ > 0
thenCr is in front of Φi, while Cr is behindΦi if χ < 0.

The mechanism above can be used to choose, among several
correspondences taken from a same image pairIi andIj that
are mapped onto the same reference point, the one related to
an unoccluded 3D point. Things are a bit more complicated
in the case of conflicting image correspondences that belong
to different image pairs. Let us consider for example the two
pairs(iy, jy) ∈ Ii×Ij , and(hz, kz) ∈ Ih×Ik, both of which
are transferred onto the same pointrx ∈ Ir. To decide for
visibility using the method above, it is required that at least
another point, sayiz, be computed. This is possible in the case
that at least one between vertexesh andk are i-connectable.

IV. EXPERIMENTS

Results of experiments with two image collections are
shown.

In a first set of experiments, a collection of six images of
an indoor scene taken from distinct viewpoints was used (see
Fig. 6). In order to match the augmented view with a ground-
truth, the reference image was obtained by cropping a wider
image containing all the scene (see Fig. 6(a)). Fig. 6(b) shows
the augmented view of the scene obtained with our method.
Notice that some regions in the augmented view are missing:
This is due to the presence of textureless regions in the scene
(for which the adopted dense stereo matching algorithm cannot
work), and also to the presence of regions that were visible in
at most only one image of the collection, and therefore could
not be transferred (see, in particular, the region between the
toy-bear and the mug on the right). A larger image collection
would produce a more dense image rendering. Fig. 6(c) shows
the standard mosaic obtained from the image collection. Notice
that the mosaic is grossly incorrect, with evident ghosting
effects and object replications, due to the presence of parallax
in the image collection. Our approach prevents this problem
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Fig. 6. The image collection for the indoor scene. The reference image is
the first of the group.

to occur, and renders the super-image maintaining projective
consistency. Fig. 8 shows the graph associated to the collection
of Fig. 6: Solid lines are the original edges of setE0, for which
direct computation of fundamental matrices was possible;
edgesǫ(3, r), ǫ(4, r) and ǫ(5, r) (dashed lines) were added
as the result of graph traversal. Three edges were inferred by
graph traversal.

The ground truth image provides also a way to compute
the transfer error for all matched SIFT points between the r-
connected image pairs and the ground truth image. Tabs. I, II
and III show the averageµ and varianceσ2 of the transfer
error for different image pairs and point transfer approaches.

In particular, Tab. I shows the performance when the visual
content shared byI1 and I2 is carried ontoIr . Besides
our approach (labeled as “F via r-connectability”), two other
approaches based on the trifocal tensorTr12 (imagesI1 and
I2 have a common overlap with the reference imageIr)
were tested.Tr12 allows us to obtain directly from a pair
of corresponding points(1x, 2x) the value ofrx in Ir; this
approach is labeled as “points viaTr12”. Furthermore, from
the trifocal tensorTr12 all the three fundamental matricesFr1,
Fr2 e F12 can be evaluated and exploited for epipolar transfer
(“F via Tr12” approach).

Tab. II shows the performance when the visual content
shared byI3 and I4 is carried ontoIr. Also in this caseF
via r-connectability approach is compared w.r.t. two other
techniques. The strategy labeled as “chainingF” maps the
common points ofI3 andI4 ontoI1 andI2; the mapped points
are then propagated ontoIr by ther-connectability approach.
The other approach relies again on the trifocal tensorTr12:

(a)

(b)

(c)

Fig. 7. (a): The ground-truth image. (b): Our augmented view. (c): Standard
mosaic (note the ghosting effects due to parallax).
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Fig. 8. The image graph for the collection of Fig. 6. Image (a)is the reference
vertex r. The edges of the initial graph are indicated by solid lines.The red
dashed lines are the edges added after graph traversal.

given two lines(1l, 2l) related to the same lineL in space,
the projection(rl of L in Ir can be obtained by exploiting
Tr12. In Our case(1l, 2l) are the epipolar lines onI1 and I2
related to a pointx in I3 or I4. This approach is labeled as
“epipolar lines viaTr12”.

Tab. III shows the results related to the visual content shared
by I5 with I3 andI4: in this case our approach has been com-
pared only with the chainingF approach. Generally speaking,
performances ony values are better than the results obtained
for thex coordinate: This is due to the fact that all the epipolar
lines involved are quite horizontal. The worst behavior of the
approaches based on trifocal tensor are explained by the fact



that the tensor was computed on fewer point correspondences
(triplets of points are required) w.r.t. the fundamental matrices.
Our direct “F via r-connectability” approach outperforms
also the “chainingF” strategy, since it avoids that the error
propagates throughout the vertexes.

Method µx σ2
x µy σ2

y

F via r-connectability 3.19 6.87 0.98 0.49
F via Tr12 13.11 27.03 9.90 20.40
points viaTr12 9.09 138.36 6.20 15.50

TABLE I
ERROR PERFORMANCE FOR THE PROPAGATION, ONTO Ir , OF THE VISUAL

CONTENT SHARED BYI1 AND I2 .

Method µx σ2
x µy σ2

y

F via r-connectability 5.30 36.04 3.06 10.64
chainingF 11.90 112.89 2.85 13.90
epipolar lines viaTr12 11.27 51.99 7.60 19.47

TABLE II
ERROR PERFORMANCE FOR THE PROPAGATION, ONTO Ir , OF THE VISUAL

CONTENT SHARED BYI3 AND I4 .

Method µx σ2
x µy σ2

y

F via r-connectability 8.23 92.41 4.68 3.20
chainingF 13.90 125.80 2.85 14.90

TABLE III
ERROR PERFORMANCE FOR THE PROPAGATION, ONTO Ir , OF THE VISUAL

CONTENT SHARED BYI5 WITH I3 AND I4 .

An example of “X-ray” view is reported in Fig. 9, where
the mug and the toy-bear are removed showing what is hidden
behind them. Notice that hidden objects are rendered in the
projective frame of the reference image.

Fig. 9. (top left): What’s behing the mug and the toy bear? (top right):
Answer: Chick, poster detail. (bottom, left and right): “X-ray” view through
the mug and toy-bear, and details of the two occluded regions. (Best viewed
in color.)

Fig. 10 shows another image collection, an outdoor one,
including touristic photos of Neptune’s fountain in Piazzadella
Signoria, Florence, Italy. In this case, the inference machinery
was able to recover one missing fundamental matrix. Fig. 11

shows the augmented view and the standard mosaic obtained
with the outdoor image collection. For the standard mosaic,the
erroneous image alignment due to parallax is even more evi-
dent than in the previous case. Notice also that our augmented
view, although providing a geometrically correct scene, isnot
illumination-compensated. This is particularly evident along
the line of separation between the reference image (a) and
image (e). A qualitative insight into our approach is gainedby
inspection of Figs. 12 and 13. The first figure illustrates photo-
consistency performance in terms of straight line preservation
for the overall augmented view. The second figure shows the
characteristics of image-based rendering in the presence of
occlusions. Notice how the occluded, and hence unrecovered,
image region inside the square box reflects the shape of the
occluding object, as if it was a shadow projected onto the
fountain basement by a light source placed in the camera
center of the left view.

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Outdoor image collection. The reference image is the first of the
group.

V. CONCLUSIONS ANDFUTURE WORK

We have present an approach for constructing multi-view
epipolar networks. These are graphs with images as vertexes
and fundamental matrices as edges. After a first set of edges
is obtained from the visual data at hand, an iterative procedure
is employed so as to infer the missing edges from the already
available ones. As a result, new vertex pairs are connected,
and epipolar information is propagated throughout the net-
work. The approach was demonstrated in an image-based
rendering scenario, where a (small) set of uncalibrated images



(a)

(b)

Fig. 11. (a): Our augmented view for the outdoor scene. (b): Standard mosaic,
with parallax-induced artifacts.

Fig. 12. Qualitative assessment of projective photoconsistency. Straight lines
in the scene remain straight also in the augmented view.

of a general 3D scene taken from multiple viewpoints were
merged into a single super-image while maintaining overall
projective coherence. To this aim, results in oriented projective
geometry were also discussed and exploited, to both detect
and handle occlusions by assessing the visibility properties
of each transferred point. Dense stereo techniques were also
illustrated, that allow both pointwise and region-based visual
transfer. Our epipolar network-based method extends the usual
mosaicing techniques to image collections with 3D parallax,
thus operating like a virtual sensor provided with an enlarged
field of view and the capability of seeing through visual
occlusions in an “X-ray” fashion.

Future work will address incorporating more basic image
subgraphs from [8] inside our graph traversal inference ma-
chine. In addition, experiments with larger image collections
than those presented here will be performed, so as to test
the way our approach scales with respect to collection size
in terms of photoconsistence accuracy, rendering density,and
computation time. A further lesser refinement of the algorithm
will be to incorporate in the approach an illumination com-
pensation technique.

(a) (b)

(c)

Fig. 13. (a)(b): Twor-connected images. The red frames mark image regions
where an occlusion arises. (c) In the augmented view, the right part of the
occluded area has the shape of the occluding arm of the statue. (Best viewed
in color.)
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