An Evaluation of Recent Local Image Descriptors for Real-World Applications of Image Matching

Fabio Bellavia, Carlo Colombo, University of Florence, Italy {fabio.bellavia, carlo.colombo}@unifi.it

SUMMARY

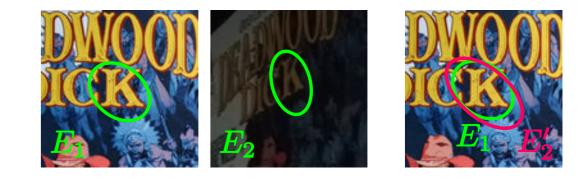
An experimental comparison of the most recent local descriptors is carried out on increasingly complex image matching tasks. The evaluation includes both planar and more challenging non-planar scenes.

EVALUATION PROTOCOL

- Keypoint extraction by the HarrisZ detector
- Patch alignment by SIFT dominant orientation
- Descriptor computation
- Decriptor matching with the Nearest-Neighbor Ratio (NNR)
- Accuracy performance is computed using automatically generated ground-truth correspondences

PLANAR SCENES

The planar dataset consists of 65 homographyrelated image pairs (13 sequences of 6 images each) from the Oxford and Viewpoint datasets, mainly including perspective transformations.



Ground-truth correspondences are computed according to the overlap error

$OE(E_1, E_{2\to 1}) = 1 - \frac{E_1 \cap E_{2\to 1}}{E_1 \cup E_{2\to 1}}$

where E_1 is the elliptical patch on the reference image and $E_{2\rightarrow 1} \sim H^{-T} E_2 H^{-1}$ is the reprojection onto the reference image of the elliptical patch E_2 on the other image.

NON-PLANAR SCENES

The non-planar dataset contains 42 fundamen- The ground truth is not based on SfM, as usually tal matrix-related image pairs (each sequence is done. It is built using the approximated overlap composed of 2 or 3 images). error

Fundamental matrices are estimated using manually selected correspondences and used for au- where μ and σ are the median and MAD flow valtomatic ground-truth computation.

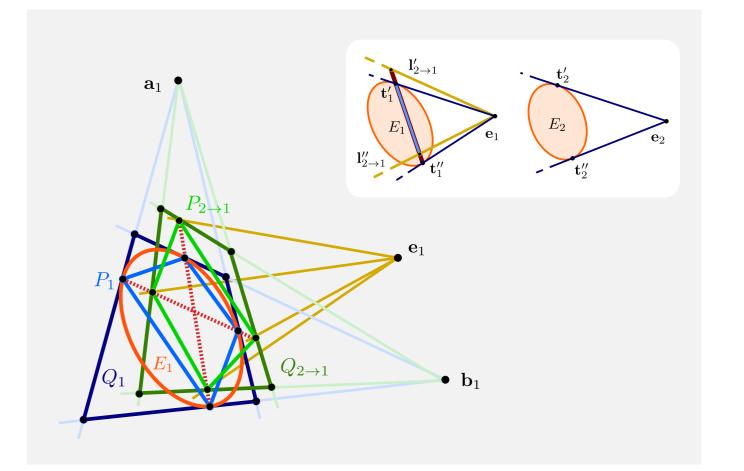
$$AOE = \frac{OE(P_1, P_{2\to 1}) + OE(Q_1, Q_{2\to 1})}{2}$$

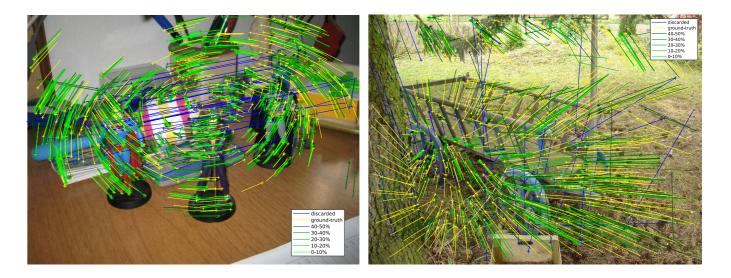
which is an extension of the overlap error for scenes with parallax. Inspired by the linear overlap error, AOE approximates each elliptical patch by a pair of quadrilaterals obtained by tangency and epipolar constraints.

False positives of the ground-truth are filtered out according to local flow length:

$$\parallel \mathbf{c}_1 - \mathbf{c}_2 \parallel > \mu + 2.5\sigma$$

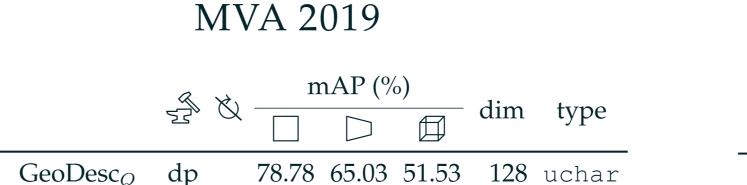
ues around the putative matches c_1 , c_2 .



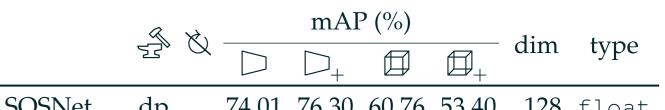


RESULTS

- Descriptors are ranked by mean Average Precision (mAP) on non-planar scenes (\square).
- ♦ Each descriptor employs the matching distance that gives the best results. Odd as it may seem, SIFT works better with L_1 than with L_2 . \diamond The best performing descriptors are those that capture both the local image context and the global scene structure (see GeoDesc, sGLOH2, SOSNet, HardNet_A). ♦ Most descriptors exhibit a gradual performance degradation in the transition from planar, through viewpoint, to non-planar scenes. ♦ Deep descriptors have the best overall performance on all datasets. \diamond Deep descriptors strongly depend on training data. For example, HardNetPS (trained with SfM) and HardNet++ (trained on Brown and HPatches) switch ranking when passing from planar to non-planar scenes. ♦ Some binary descriptors exhibit a good balance between length (i.e., memory storage and computational efficiency) and accuracy. \Diamond In MVA 2019 (data from Nov. 2018), the best descriptors of all are the deep GeoDesc (with and without quantization) and the handcrafted sGLOH2 (binary and non-binary).



WISW 2019 CONTEST



 \diamond The "Which is Which?" (WISW, Apr. 2019) contest included still unpublished descriptors (SOSNet, RsGLOH2 and RalNet Shuffle) and the brand new HardNet_A descriptor.

	GeoDebeg	мр		10.10	00.00	01.00	140	aonar
	GeoDesc	dp		78.75	65.10	51.51	128	float
	L2-Net $_{CS}$	dp		67.00	54.64	48.12	256	float
L_2	HardNet++	dp		70.73	58.37	47.54	128	float
Γ	HardNetPS	dp		73.94	59.86	45.77	128	float
	L2-Net	dp		59.91	48.62	43.00	128	float
	MIOP	dd	\checkmark	76.36	57.02	40.54	128	float
	DeepDesc	dp		55.38	47.84	38.35	128	float
	sGLOH2	hc	\checkmark	75.64	63.51	50.68	256	uchar
Ļ	LIOP	hc	\checkmark	74.11	55.22	39.52	144	uchar
L_{1}	RootSIFT	hc		63.71	49.09	38.88	128	float
	SIFT	hc		63.93	47.48	37.58	128	uchar
ba	BisGLOH2	hc	\checkmark	74.26	61.49	49.31	1152	bit
Hamming	BiL2-Net $_{CS}$	dp		61.42	49.35	43.31	256	bit
ши	RFD_G	dd		68.77	55.63	40.25	406	bit
Har	RFD_R	dd		68.26	54.13	38.48	293	bit
F	BiL2-Net	dp		48.70	36.58	34.33	128	bit
V	MKD	hc		62.65	48.89	40.67	238	float
*	MKD_W	dd		62.84	48.64	40.10	128	float

family [hc: hand-crafted | dd: data-driven | dp: deep-based] ☆ rotationally invariant * dot product \Box planar \Box viewpoint only \Box non-planar

- \diamond In WISW 2019, most of the latest deep descrip- \diamond tors outperform the best hand-crafted descriptors.
- WISW uses a slightly different evaluation pro- \diamond tocol. Specifically, SIFT-based patch alignment is replaced by a deep-based one. Moreover, a symmetric version of NNR is employed for descriptor matching. These changes remarkably improve the matching accuracy.

	SOSNet	dp		74.01	76.30	60.76	53.40	128	tloat
	AffNet+HardNet _A	dp		71.71	74.11	59.98	53.34	128	uchar
	HardNet _{A}	dp		72.14	74.29	57.47	50.08	128	uchar
	OriNet+HardNet _A	dp		71.14	73.50	57.09	49.92	128	uchar
	$L2Net_{CS}$	dp		66.97	69.49	56.46	48.79	256	float
L_{2}	$\operatorname{GeoDesc}_Q$	dp		71.83	75.60	55.47	47.56	128	uchar
	HardNet++	dp		68.86	71.49	55.37	47.80	128	uchar
	RalNet Shuffle	dp		62.76	65.51	49.75	41.53	128	uchar
	DOAP	dp		67.19	69.80	44.99	41.77	128	float
	DeepDesc	dp		56.32	53.24	44.93	37.03	128	float
	MIOP	dd	\checkmark	52.13	56.83	39.33	33.38	128	float
	RsGLOH2	hc	\checkmark	67.84	70.68	56.11	48.19	256	float
L_1	sGLOH2	hc	\checkmark	63.50	67.25	52.49	44.86	256	uchar
	RootSIFT	hc		56.74	58.46	44.77	37.73	128	float
	LIOP	hc	\checkmark	49.50	54.51	37.93	32.05	144	uchar
	BisGLOH2	hc	\checkmark	62.27	66.04	51.64	44.08	1152	bit
Hamming	$BiL2-Net_{CS}$	dp		61.06	63.11	50.86	43.33	256	bit
	BiDOAP	dp		52.74	54.24	41.41	34.57	128	bit
Har	RFD_G	dd		50.75	53.58	40.40	34.17	406	bit
H	RFD_R	dd		50.28	52.62	39.31	32.96	293	bit
*	MKD_W	dd		56 40	59 52	45.70	39.05	128	float

 $\square_+ = \square$ plus 30 new viewpoint pairs $\square_+ = \square$ plus 30 new non-planar pairs

The WISW dataset extends the MVA dataset with 30 more viewpoint and 30 more nonplanar image pairs. The new viewpoint pairs do not add information on descriptor behavior, as the results remain almost unchanged. The new non-planar pairs induce instead a performance loss. Hence, current descriptors cannot successfully deal yet with many patch deformations occurring in non-planar scenes.