Extending the sGLOH descriptor
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Abstract. This paper proposes an extension of the sGLOH keypoint de-
scriptor which improves its robustness and discriminability. The sGLOH
descriptor can handle discrete rotations by a cyclic shift of its element
thanks to its circular structure but its performances can decrease when
the keypoint relative rotation is in between two sGLOH discrete rota-
tions. The proposed extension couples together two sGLOH descriptor of
the same patch with different rotations in order to cope with this issue
and it can be also applied straightly to the sCOr and sGOr matching
strategies of sGLOH. Experimental results show a consistent improve-
ment of the descriptor discriminability while different setups can be used
to reduce the running time according to the desidered task.
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1 Introduction

Keypoint descriptors are valid and useful tools in many computer vision
tasks, such as recognition, tracking and 3D reconstruction [I0]. In par-
ticular descriptors encode properties of image portions extracted by a
keypoint detector [IT] into numerical vectors in order to evaluate their
similarities.

Modern descriptors are mainly based on histogram concatenation such as
SIFT and its variants [B,[], MROGH [6] or LIOP [i2]. Recently, although
they still cannot fully reach the discriminability power of histogram based
descriptors, descriptors based on multiple binary comparisons [d], learn-
ing [A] and alternative subspace representations [I3] received a great
effort too due to their interesting properties such as really fast compu-
tation and high compactness.

Among the SIFT variants, the sGLOH descriptor [8] coupled with spec-
ified matching strategies achieved results comparable with the state-of-
the-art LIOP and MROGH descriptors. In particular, the sGLOH de-
scriptor uses a circular grid to incorporate more descriptor instances
of the same patch at different orientations into a single feature vector,
accessible by a simple cyclic shift of the feature vectors. The match-
ing distance between two features is obtained as the minimum distance
among all descriptors for the possible discrete orientations handled by
sGLOH. Further improvements can be obtained by limiting the range
of allowable orientations according to the scene context. Two matching
strategies are derived, namely sCOr and sGOr, respectively when the



orientation range constraint is defined a priori by the user or obtained
without user intervention by inspecting the data.

Although robust and efficient, the sGOR descriptor performances can
degrade in the case the true relative rotation between the two keypoint
patches is equal to half of the sGLOH handled discrete rotation. In order
to cope with this issue, we proposed to couple together two sGLOH
descriptors for the same patch, with a rotation shift equal to half sGLOH
discrete rotation.

A brief introduction to the sGLOH descriptor is given in Sect. B, also
providing details about the matching strategies and the sGLOH worst
case. Next, Sect. B describes the proposed solution together with the
different matching strategies which can rise from the proposed sGLOH
extension. Evaluation results on the comparison of the proposed method
against the sGLOH and other descriptors is given in Sect. @, while an
analysis of the running times in provided in Sect. B. Conclusions and
future work are discussed on Sect. B.

2 sGLOH Description

Given a normalized image patch, so that its intensity values are affine
normalized and its shape equals the unit circle, the sGLOH descriptor [3]
grid is made up of n X m regions, obtained by splitting n circular rings
into m sectors (see Fig. ).

Fig.1: Rotation of an image patch with the superimposed sGLOH grid by a
factor %’T (left), which corresponds to a cyclic shift of the block histogram for
each ring (right). In the example n = 2 and m = 4 (best viewed in color)



For each region the histogram of the m quantized orientations dy =
k %”, k=0,...,m—1 weighted by the gradient magnitude is computed.
Gaussian kernel density estimation is used for interpolation and a block
histogram H;; with¢=0,...,n—1and j =0,...,m — 1, associated to
the each sGLOH region is defined by the ordering the computed gradient
histogram so that its first bin corresponds to the normal direction of the
region and the others follow in clockwise order. The concatenation H of
the block histogram, normalized to the unit length on L1, gives the final
sGLOH descriptor.
As shown in Fig. O, the rotation of the descriptor by a factor dy, is
obtained by k cyclic shifts of the block histogram for each ring, without
recomputing the descriptor vector. In this sense, the sGLOH descriptor
packs m different descriptors of the same patch with for several discrete
dominant orientations. The distance between two sGLOH features H and
H is then given by

D(H,H)=_min D(H Hy) (1)
where D(-, ) is a generic distance measure and H}, is the cyclic shift ap-
plied to the descriptor H to get the discrete rotation di. According to [3]
setting n = 2 and m = 8, which implies that the descriptor dimension
is | = nm? = 128 and the discrete orientation step is 45°, gives the best
sGLOH setup.
A further improvement on the sGLOH can be obtained by limiting the
range of the discrete orientations so that part of wrong matches are
discarded and cannot be selected by chance. In the sCOr approach one
sets a priori k = 0,1,m —1 in (0), i.e. the range of allowable orientations
is limited to the first clockwise and counter-clockwise discrete rotations.
Although sCOr handles rotations of up to +67.5° only, the method is
general enough to be employed in a lot of common practical applications,
such as SLAM [0] and sparse matching [9], since transformations are
relatively continuous for close images.
The sGOr approach uses instead the scene context to provide a global
reference orientation, under the reasonable assumption that all keypoints
of the scene undergo roughly the same approximated discrete rotation g,
not known a priori. The range of discrete orientations in (I) is modified
tok=g—1,9,9+ 1, where g € {0,1,...,m — 1} and the computations
are done by using the modulo m arithmetic to take into the account the
cyclic nature of k. The value of g is estimated according to the most
probable relative orientation among all matches, see [3] for more details.

3 The sGLOH2 Extension

The sGLOH descriptor, especially if coupled with the sCOr and sGOr
matching strategies, obtains results comparable with state-of-the-art de-
scriptors [B], but can suffer to performance degradations when the rela-
tive rotation between the patches approaches that between two discrete
sGLOH rotations, i.e. it is of the form k %’ + = fork=0,...,m—1

In order to solve this issue, we define a novel sSGLOH2 descriptor H*,
obtained by concatenating two sGLOH descriptors H' and H? of the



same patch, where H' is the standard sGLOH descriptor of the patch,
while H? is is obtained after applying a rotation of 2~ to the patch.
This corresponds to double the number of possible discrete directions
m, leaving the same histogram dimension. Note that this is not equal to
double m in the sGLOH parameters, as in this case a smaller and less
discriminant descriptor regions would be obtained, since the number of
circular sectors will be doubled.
Assuming the sequence {0, =, 2;”, %, ...} of the 2m successive discrete
rotations by step .-, the corresponding ordered set of cyclic shifted de-
scriptors is given by

QH") = {Hy, Hi, Hi, H{, ..., Hy 1, Hy 1} (2)
where Hj is the cyclic shift applied to the descriptor H*, z € {1,2},
to get the discrete rotation dj as in Sect. B. The distance between two
sGLOH?2 features H* and H " becomes

Do(H* H')= min D(H],K) (3)
KeQ(H™)

The sGLOH2 descriptor length is [* = 2] = 256 and different matching
strategies can be obtained in analogy with the sCOr and sGOr matching.
In particular, similar to the sCOr strategy we can define more sCOr2
strategies. By limiting the rotations up to +7-, i.e. using the subset
{Fé, ﬁg, ﬁfn,l} instead of Q(ﬁ*) in (B) we get the sCOr2.1 strategy. A
wider rotation range, up to -2, could be also used defining the sCOr2.2
matching strategy, i.e. using the subset {ﬁé, Fg, ﬁi, ﬁ,ln_l, an_l}
in (8).
Similar to sGOr, the estimation of the global reference orientation g cab
be achieved using all the 2m descriptors in @ (sGOr2a strategy) or only
the m descriptor belonging to the first concatenated sGLOH descriptor
H' (sGOr2h strategy), while the relative rotation window could be con-
strained as above up to £ or £27-, obtaining 4 possible final different
matching strategies (sGOr2a.1, sGOr2a.2, sGOr2h.1, sGOr2h.2).

4 Evaluation

We first evaluated sGLOH2 and the corresponding matching strategies
on rotation on the same setup described in [B]. A dataset of 16 images,
rotating from 0° to 90° only (due to the cyclic nature of the sGLOH
descriptor) is used to measure the average percentage of correct matches
for intermediate rotations. The L; distance is used since according to [8]
it obtains better results than Ly. Plots are reported in Fig. D.

As it can be noted, both the proposed sGLOH2 and its matching strategy
improve on the original sGLOH versions when rotations are close to the
worst case. In particular the results of the proposed extensions are better
then SIFT and very close to the results of LIOP and MROGH. Only a
difference less than 2% with LIOP and MROGH exists for rotations of
the form k = + 57~ for k = 0,...,2m — 1, i.e. between rotations of -,
in analogy with the original worst case, that is negligible in almost all
cases.
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Fig.2: Descriptor average percentage of correct matches for different rotation
degrees (best viewed in color)

Furthermore, by comparing the sCOr and sCOr2 strategies it can be
observed that the sCOr2.2 and sCOr matching can handle both angles
up to +67.5° while sCOr2.1 works with rotations up to +45° only since
it allows less rotation shifts, according to their constructions given in
Sect. 0.

No relevant differences can be noted between the sGOr2a and sGOr2h
matching strategies, while if we compare the sSGLOH2 descriptor against
sGOr2a and sGOr2h, these last two work slightly better as they operate
on a limited number of possible rotations, reducing the probability that
two non-corresponding descriptors are matched by chance. This observa-
tion also holds for sCOr and sCOr2.2 for rotation greater than 45° since
3 rotations are checked for sCOr while 5 for sCOr2.2, so that in the first
case there is, although minimal, less probability of wrong matches by
chance.

The sGLOH2 extensions were also tested on the Oxford dataset [§], which
offers a more challenging scenarios since different image transformations
are applied to the images, not only rotations. In order to get a fair
comparison, we used the same setup described in [8] even in this case.
The keypoints where extracted using the HarrisZ detector [?], while for
matching the NN strategy was used for sGLOH and its variants and the
NNR matching for the others, in both cases using the L1 distance, since
these parameters provide the best setup for each descriptor. Results for
the first and fourth image pair for each sequence are reported in Figs. B-
B for varying the precision, both in terms of recall (number of correct
matches/number of total correct matches) and correspondences (number



of correct matches/number of total matches). The maximum correspon-
dence (number of total correct matches/number of total matches) for
each image pair is reported too. The sCOr and sCOr2 descriptors are
not included in this evaluation as there are image pairs with more than
their allowable rotations.

Boat 14 — scale and rotation (structured) Bark 1|4 — scale and rotation (textured)
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Fig. 3: Precision/recall curves for the Oxford dataset. Image pairs for the first
and fourth images in the case of scale, rotation and viewpoint changes are shown
(best viewed in color)

The sGLOH2, sGOr2a and sGOr2h provide a relevant improvement upon
sGLOH and sGOr, especially in the case of scale, rotation and viewpoint
changes, while in the case of variations of blur, luminosity and compres-
sion the improvements are less relevant. The most notable case is for the
textured image rotation and scale change (Bark sequence), on which one
can also note that the sGOr2a matching strategy slightly improves on
the sGOr2h, while in the other cases results are the same.

Note that MROGH is introduced in the comparison as a sort of upper
bound since, as noted in [8], its support regions is three times those of the
other descriptors This leads to a misleading boosting in performances,
especially in case of planar image transformations such as for the Ox-
ford dataset. With respect to sGLOH and its matching strategies, the
sGLOH2 extensions obtains similar or better results against LIOP in the



structured image sequences with geometric transformations (the Graffiti
and Boat sequences); SIFT results seem in general worst than others.
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Fig.4: Precision/recall curves for the Oxford dataset. Image pairs for the first
and fourth images in the case of blur, luminosity and image compression changes
are shown (best viewed in color)

Plot in Fig. B shows the precision/recall curves with the previous setup
on the first and fifth image pair of the sequences with geometrical trans-
formations, which represent a more challenging pairs. As it can be noted
the improvements given by the sGLOH2 extensions are still remarkable,
especially in the case of scale and rotation changes for textured images
(the Bark sequence). Furthermore, it can be noted that for these image
pairs there are no relevant difference between MROGH and the proposed
descriptors, while LIOP and SIFT results seem very varying.

5 Running Time

Figure B reports the estimated running times for the evaluated methods,
together with a details of the time spent by each computational steps
fora particular example. The estimated curves are obtained by quadratic
fitting on the image pairs of the Oxford and rotation datasets, denoted
by crosses. It can be noted that sGOr2a and sGLOH2 are very time
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Fig. 5: Precision/recall curves for the Oxford dataset. Image pairs for the first
and fifth images in the case of scale, rotation and viewpoint changes are shown
(best viewed in color)

consuming, while sGOr2h and sCOr2 running times are still reasonable
considering the final matching results, especially up to 2000 keypoints
per image. When more keypoints are used and rotations are constrained
up to +45° only the sCOr2.1 strategy is very favourable in terms of
computational speed. Note however that according to the authors’ ex-
perience in general the number of keypoints for matching are bounded
to about 1500 for reducing memory issues as well as the probability of
wrong matches by chance.

By inspecting the cumulative time histogram on Fig. B(right), it can be
noted that the time for computing the descriptor in the case of LIOP and
sGLOH are the lowest, followed by sGLOH2, and more computational
cost is required by MROGH and SIFT. The quadratic matching cost (for
n features there are n? possible matches) makes the difference between
the sGLOH and sGLOH2 methods and the others.

In particular, setting to ¢ the time required to compute all the matches
between two images using a generic distance measure D, which can be
assumed almost equal for SIFT, LIOP and MROGH, a multiplication
factor equal to the number of rotation to check should be added accord-
ing to (M) so that the original sGLOH, sCOr and sGOr require respec-
tively about mt, 3t and mt times for matching. Analogously, according
to (), the sGLOH2 match required time is about 2mt, for sCOr2.1 and



sCOr2.2 respectively 3t and 5t, while for sGOr2a.1, sGOr2a.2, sGOr2h.1,
sGOr2h.2 the times are about 2mt, 2mt, mt, mt respectively, in accor-
dance with the histogram bars.
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Fig. 6: Estimated running time for the evaluated descriptor (left) and a detailed
cumulative time example (right). Descriptor order follows that of the legend
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6 Conclusions and Future Work

This paper presents an extension to the sGLOH descriptor and the cor-
responding matching strategies sCOr and sGOr. According to the ob-
tained results, these improvements are effective, through a more robust
rotation handling, especially for the sGLOH worst case, but also in the
general matching between descriptors. Although the computational time
increases, it is still reasonable in a lot of applications and it can be ad-
justed according to the required task by choosing the right matching
strategy. In particular, the sCOr2.1 is the fastest among these and can
handle rotation up to £45°, followed by sCOR2.2 with constrained rota-
tion up to +67.5°, and the sGOr2h.1 matching for general tasks, which
differs only slightly from the more costly sGOr2a.2 matching strategy.
Future work will include more experimental evaluations, tests on descrip-
tor binarization to reduce its dimension and to improve its running time
as well as fast distance check to discard very probable bad matches.
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